16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Determining Immune and miRNA Biomarkers Related to Respiratory Syncytial Virus (RSV) Vaccine Types

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Respiratory Syncytial Virus (RSV) causes serious respiratory tract illness and substantial morbidity and some mortality in populations at the extremes of age, i.e., infants, young children, and the elderly. To date, RSV vaccine development has been unsuccessful, a feature linked to the lack of biomarkers available to assess the safety and efficacy of RSV vaccine candidates. We examined microRNAs (miR) as potential biomarkers for different types of RSV vaccine candidates. In this study, mice were vaccinated with a live attenuated RSV candidate that lacks the small hydrophobic (SH) and attachment (G) proteins (CP52), an RSV G protein microparticle (GA2-MP) vaccine, a formalin-inactivated RSV (FI-RSV) vaccine or were mock-treated. Several immunological endpoints and miR expression profiles were determined in mouse serum and bronchoalveolar lavage (BAL) following vaccine priming, boost, and RSV challenge. We identified miRs that were linked with immunological parameters of disease and protection. We show that miRs are potential biomarkers providing valuable insights for vaccine development.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways

          MicroRNAs (miRNAs) are key regulators of diverse biological processes and their functional analysis has been deemed central in many research pipelines. The new version of DIANA-miRPath web server was redesigned from the ground-up. The user of DNA Intelligent Analysis (DIANA) DIANA-miRPath v2.0 can now utilize miRNA targets predicted with high accuracy based on DIANA-microT-CDS and/or experimentally verified targets from TarBase v6; combine results with merging and meta-analysis algorithms; perform hierarchical clustering of miRNAs and pathways based on their interaction levels; as well as elaborate sophisticated visualizations, such as dendrograms or miRNA versus pathway heat maps, from an intuitive and easy to use web interface. New modules enable DIANA-miRPath server to provide information regarding pathogenic single nucleotide polymorphisms (SNPs) in miRNA target sites (SNPs module) or to annotate all the predicted and experimentally validated miRNA targets in a selected molecular pathway (Reverse Search module). DIANA-miRPath v2.0 is an efficient and yet easy to use tool that can be incorporated successfully into miRNA-related analysis pipelines. It provides for the first time a series of highly specific tools for miRNA-targeted pathway analysis via a web interface and can be accessed at http://www.microrna.gr/miRPathv2.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms.

            The role of transforming growth factor-beta (TGF-beta) in inhibiting T cell functions has been studied with dominant-negative TGF-beta receptor transgenic models; however, the full impact of TGF-beta signaling on T cells and the mechanisms by which TGF-beta signals remain poorly understood. Here we show that mice with T cell-specific deletion of TGF-beta receptor II developed lethal inflammation associated with T cell activation and differentiation. In addition, TGF-beta signaling positively regulated T cell development and homeostasis. Development of CD8+ T cells and NKT cells, maintenance of peripheral Foxp3-expressing regulatory T cells, and survival of CD4+ T cells all depended on TGF-beta signaling. Both T helper 1 (Th1) differentiation and survival of activated CD4+ T cells required T-bet, the TGF-beta-regulated transcription factor, which controlled CD122 expression and IL-15 signaling in Th1 cells. This study reveals pleiotropic functions of TGF-beta signaling in T cells that may ensure a diverse and self-tolerant T cell repertoire in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Upregulation of Cyclin B1 by miRNA and its implications in cancer

              It is largely recognized that microRNAs (miRNAs) function to silence gene expression by targeting 3′UTR regions. However, miRNAs have also been implicated to positively-regulate gene expression by targeting promoter elements, a phenomenon known as RNA activation (RNAa). In the present study, we show that expression of mouse Cyclin B1 (Ccnb1) is dependent on key factors involved in miRNA biogenesis and function (i.e. Dicer, Drosha, Ago1 and Ago2). In silico analysis identifies highly-complementary sites for 21 miRNAs in the Ccnb1 promoter. Experimental validation identified three miRNAs (miR-744, miR-1186 and miR-466d-3p) that induce Ccnb1 expression in mouse cell lines. Conversely, knockdown of endogenous miR-744 led to decreased Ccnb1 levels. Chromatin immunoprecipitation (ChIP) analysis revealed that Ago1 was selectively associated with the Ccnb1 promoter and miR-744 increased enrichment of RNA polymerase II (RNAP II) and trimethylation of histone 3 at lysine 4 (H3K4me3) at the Ccnb1 transcription start site. Functionally, short-term overexpression of miR-744 and miR-1186 resulted in enhanced cell proliferation, while prolonged expression caused chromosomal instability and in vivo tumor suppression. Such phenotypes were recapitulated by overexpression of Ccnb1. Our findings reveal an endogenous system by which miRNA functions to activate Ccnb1 expression in mouse cells and manipulate in vivo tumor development/growth.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                09 October 2019
                2019
                : 10
                : 2323
                Affiliations
                Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia , Athens, GA, United States
                Author notes

                Edited by: Alexis M. Kalergis, Pontifical Catholic University of Chile, Chile

                Reviewed by: Marina Boukhvalova, Sigmovir Biosystems, United States; Marcelo Lopez-Lastra, Pontifical Catholic University of Chile, Chile

                *Correspondence: Ralph A. Tripp ratripp@ 123456uga.edu

                This article was submitted to Viral Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.02323
                6794384
                31649663
                eac56830-bcd0-42f1-9ff3-75405255efab
                Copyright © 2019 Atherton, Jorquera, Bakre and Tripp.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 December 2018
                : 13 September 2019
                Page count
                Figures: 3, Tables: 8, Equations: 0, References: 163, Pages: 16, Words: 13332
                Funding
                Funded by: Georgia Research Alliance 10.13039/100008065
                Categories
                Immunology
                Original Research

                Immunology
                rsv,mir,vaccines,immune,disease,microrna
                Immunology
                rsv, mir, vaccines, immune, disease, microrna

                Comments

                Comment on this article