Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Blending Aryl Ketone in Covalent Organic Frameworks to Promote Photoinduced Electron Transfer

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: not found
          • Article: not found

          Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Porous, crystalline, covalent organic frameworks.

            Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid {C6H4[B(OH)2]2} and hexahydroxytriphenylene [C18H6(OH)6]. Powder x-ray diffraction studies of the highly crystalline products (C3H2BO)6.(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed expanded porous graphitic layers that are either staggered (COF-1, P6(3)/mmc) or eclipsed (COF-5, P6/mmm). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 degrees to 600 degrees C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Organic Photoredox Catalysis.

              In this review, we highlight the use of organic photoredox catalysts in a myriad of synthetic transformations with a range of applications. This overview is arranged by catalyst class where the photophysics and electrochemical characteristics of each is discussed to underscore the differences and advantages to each type of single electron redox agent. We highlight both net reductive and oxidative as well as redox neutral transformations that can be accomplished using purely organic photoredox-active catalysts. An overview of the basic photophysics and electron transfer theory is presented in order to provide a comprehensive guide for employing this class of catalysts in photoredox manifolds.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of the American Chemical Society
                J. Am. Chem. Soc.
                American Chemical Society (ACS)
                0002-7863
                1520-5126
                April 26 2023
                April 17 2023
                April 26 2023
                : 145
                : 16
                : 9198-9206
                Affiliations
                [1 ]Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
                [2 ]Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou 324000, P. R. China
                Article
                10.1021/jacs.3c01273
                37125453
                eb1ab7cd-0f24-48cf-a601-62b153803608
                © 2023

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article