43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Next Generation Sequencing of Fecal DNA Reveals the Dietary Diversity of the Widespread Insectivorous Predator Daubenton’s Bat ( Myotis daubentonii) in Southwestern Finland

      research-article
        * ,   , ,  
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding predator-prey dynamics is a fundamental task in the evaluation of the adaptive capacities of species. However, direct observations or morphological identification of fecal remains do not offer an effective way to study the dietary ecology of elusive species, such as nocturnal insectivorous bats. However, recent advances in molecular techniques have opened a new method for identifying prey species from fecal samples. In this study, we amplified species-specific mitochondrial COI fragments from fecal DNA extractions from 34 individual Daubenton’s bats ( Myotis daubentonii) collected between 2008 and 2010 from southwestern Finland. Altogether, 128 different species of prey were identified based on a comprehensive local DNA reference library. In our study area, Daubenton’s bats feed most frequently on insects of the orders Diptera (found in the diet of 94% individuals), Trichoptera (69%) and Lepidoptera (63%). The most frequent dipteran family in the diet was Chironomidae, which was found in 31 of 34 individuals. Most common prey species were chironomids Microtendipes pedellus (found in 50% of bats), Glyptotendipes cauliginellus (44%), and Procladius ferrugineus (41%). For the first time, an accurate species level list of the diet of the insectivorous Daubenton’s bat ( Myotis daubentonii) in Finland is presented. We report a generally applicable method for describing the arthropod diet of vertebrate predators. We compare public databases to a national database to highlight the importance of a local reference database.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          An integrated semiconductor device enabling non-optical genome sequencing.

          The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GenBank

            GenBank® is a comprehensive database that contains publicly available DNA sequences for more than 165 000 named organisms, obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Most submissions are made using the web-based BankIt or standalone Sequin programs and accession numbers are assigned by GenBank staff upon receipt. Daily data exchange with the EMBL Data Library in the UK and the DNA Data Bank of Japan helps to ensure worldwide coverage. GenBank is accessible through NCBI's retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. To access GenBank and its related retrieval and analysis services, go to the NCBI Homepage at http://www.ncbi.nlm.nih.gov.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular analysis of predation: a review of best practice for DNA-based approaches.

              Molecular analysis of predation, through polymerase chain reaction amplification of prey remains within the faeces or digestive systems of predators, is a rapidly growing field, impeded by a lack of readily accessible advice on best practice. Here, we review the techniques used to date and provide guidelines accessible to those new to this field or from a different molecular biology background. Optimization begins with field collection, sample preservation, predator dissection and DNA extraction techniques, all designed to ensure good quality, uncontaminated DNA from semidigested samples. The advantages of nuclear vs. mitochondrial DNA as primer targets are reviewed, along with choice of genes and advice on primer design to maximize specificity and detection periods following ingestion of the prey by the predators. Primer and assay optimization are discussed, including cross-amplification tests and calibratory feeding experiments. Once primers have been made, the screening of field samples must guard against (through appropriate controls) cross contamination. Multiplex polymerase chain reactions provide a means of screening for many different species simultaneously. We discuss visualization of amplicons on gels, with and without incorporation of fluorescent primers. In more specialized areas, we examine the utility of temperature and denaturing gradient gel electrophoresis to examine responses of predators to prey diversity, and review the potential of quantitative polymerase chain reaction systems to quantify predation. Alternative routes by which prey DNA might get into the guts of a predator (scavenging, secondary predation) are highlighted. We look ahead to new technologies, including microarrays and pyrosequencing, which might one day be applied to this field.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                27 November 2013
                : 8
                : 11
                : e82168
                Affiliations
                [1]Department of Biology, University of Turku, Turku, Finland
                University of Milan-Bicocca, Italy
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EJV TL. Performed the experiments: EJV TL VNL. Analyzed the data: EJV. Contributed reagents/materials/analysis tools: EJV TL VNL NW. Wrote the manuscript: EJV TL VNL NW.

                Article
                PONE-D-13-34077
                10.1371/journal.pone.0082168
                3842304
                24312405
                eb2d8887-f7dc-492a-87cf-680315151f9d
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 August 2013
                : 31 October 2013
                Funding
                Funding was provided by the Emil Aaltonen Foundation, Turku University Foundation, Maj and Tor Nessling Foundation, and Kone Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article