44
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coevolution and the Effects of Climate Change on Interacting Species

      research-article
      * ,
      PLoS Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effects on survival of species-species interaction in the face of a changing climate depend on whether the species' interests are conflicting or non-conflicting.

          Abstract

          Background

          Recent studies suggest that environmental changes may tip the balance between interacting species, leading to the extinction of one or more species. While it is recognized that evolution will play a role in determining how environmental changes directly affect species, the interactions among species force us to consider the coevolutionary responses of species to environmental changes.

          Methodology/Principle Findings

          We use simple models of competition, predation, and mutualism to organize and synthesize the ways coevolution modifies species interactions when climatic changes favor one species over another. In cases where species have conflicting interests (i.e., selection for increased interspecific interaction strength on one species is detrimental to the other), we show that coevolution reduces the effects of climate change, leading to smaller changes in abundances and reduced chances of extinction. Conversely, when species have nonconflicting interests (i.e., selection for increased interspecific interaction strength on one species benefits the other), coevolution increases the effects of climate change.

          Conclusions/Significance

          Coevolution sets up feedback loops that either dampen or amplify the effect of environmental change on species abundances depending on whether coevolution has conflicting or nonconflicting effects on species interactions. Thus, gaining a better understanding of the coevolutionary processes between interacting species is critical for understanding how communities respond to a changing climate. We suggest experimental methods to determine which types of coevolution (conflicting or nonconflicting) drive species interactions, which should lead to better understanding of the effects of coevolution on species adaptation. Conducting these experiments across environmental gradients will test our predictions of the effects of environmental change and coevolution on ecological communities.

          Author Summary

          Recent studies suggest that environmental changes may tip the balance between species that interact with each other, leading to the extinction of one or more species. While it is recognized that evolution will alter the way environmental changes directly affect individual species, the interactions between species force us to also consider the evolution of species interactions themselves. We use simple models of competition, predation, and mutualism to evaluate the effect of coevolution on the abundance of interacting species when climatic changes favor one species over another. In cases where the species have conflicting interests (i.e., where selection on one species for increased strength of the interaction is detrimental to the other, such as an organism becoming more aggressive towards competitors), we show that coevolution reduces the effects of climate change, leading to smaller changes in abundances and reduced chances of extinction. Conversely, when the species have nonconflicting interests (i.e., where selection for increased interaction strength on one species benefits the other, such as an organism avoiding competition with other species), coevolution increases the effects of climate change. Thus, gaining a better understanding of the nature of the coevolution between interacting species is critical for understanding how communities respond to a changing climate.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found

          NONPOINT POLLUTION OF SURFACE WATERS WITH PHOSPHORUS AND NITROGEN

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene flow and the geographic structure of natural populations.

            M Slatkin (1987)
            There is abundant geographic variation in both morphology and gene frequency in most species. The extent of geographic variation results from a balance of forces tending to produce local genetic differentiation and forces tending to produce genetic homogeneity. Mutation, genetic drift due to finite population size, and natural selection favoring adaptations to local environmental conditions will all lead to the genetic differentiation of local populations, and the movement of gametes, individuals, and even entire populations--collectively called gene flow--will oppose that differentiation. Gene flow may either constrain evolution by preventing adaptation to local conditions or promote evolution by spreading new genes and combinations of genes throughout a species' range. Several methods are available for estimating the amount of gene flow. Direct methods monitor ongoing gene flow, and indirect methods use spatial distributions of gene frequencies to infer past gene flow. Applications of these methods show that species differ widely in the gene flow that they experience. Of particular interest are those species for which direct methods indicate little current gene flow but indirect methods indicate much higher levels of gene flow in the recent past. Such species probably have undergone large-scale demographic changes relatively frequently.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              The struggle for existence, by G. F. Gause.

              G. Gauze (1934)
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                October 2013
                October 2013
                22 October 2013
                : 11
                : 10
                : e1001685
                Affiliations
                [1]Department of Zoology, University of Wisconsin, Madison, Wisconsin, United States of America
                Institute of Science and Technology Austria (IST Austria), Austria
                Author notes

                The authors have declared that no competing interests exist.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: TDN ARI. Performed the experiments: TDN ARI. Analyzed the data: TDN ARI. Wrote the paper: TDN ARI.

                [¤]

                Current address: Centre for Tropical Biodiversity and Climate Change, School of Marine and Tropical Biology, James Cook University, Cairns, Queensland, Australia

                Article
                PBIOLOGY-D-13-02387
                10.1371/journal.pbio.1001685
                3805473
                24167443
                eb40eb92-5e89-41b2-b26a-a80e9284adcd
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 June 2013
                : 12 September 2013
                Page count
                Pages: 13
                Funding
                TDN was supported by a USDA Postdoctoral fellowship (#WISW-2010-05109). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Life sciences
                Life sciences

                Comments

                Comment on this article