1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      5-Fluorouracil—Complete Insight into Its Neutral and Ionised Forms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          5-Fluorouracil (5FU), a common anti-cancer drug, occurs in four tautomeric forms and possesses two potential sites of both protonation and deprotonation. Tautomeric and resonance structures of the ionized forms of 5FU create the systems of connected equilibriums. Since there are contradictory reports on the ionized forms of 5FU in the literature, complex theoretical studies on neutral, protonated and deprotonated forms of 5FU, based on the broad spectrum of DFT methods, are presented. These indicate that the O4 oxygen is more willingly protonated than the O2 oxygen and the N1 nitrogen is more willingly deprotonated than the N3 nitrogen in a gas phase. Such preferences are due to advantageous charge delocalization of the respective ions, which is demonstrated by the NBO and ESP analyses. In an aqueous phase, stability differences between respective protonated and deprotonated forms of 5FU are significantly diminished due to the competition between the mesomeric effect and solvation. The calculated p K a values of the protonated, neutral and singly deprotonated 5FU indicate that 5FU does not exist in the protonated and double-deprotonated forms in the pH range of 0–14. The neutral form dominates below pH 8 and the N1 deprotonated form dominates above pH 8.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions.

          We present a new hybrid meta exchange-correlation functional, called M05-2X, for thermochemistry, thermochemical kinetics, and noncovalent interactions. We also provide a full discussion of the new M05 functional, previously presented in a short communication. The M05 functional was parametrized including both metals and nonmetals, whereas M05-2X is a high-nonlocality functional with double the amount of nonlocal exchange (2X) that is parametrized only for nonmetals. In particular, M05 was parametrized against 35 data values, and M05-2X is parametrized against 34 data values. Both functionals, along with 28 other functionals, have been comparatively assessed against 234 data values:  the MGAE109/3 main-group atomization energy database, the IP13/3 ionization potential database, the EA13/3 electron affinity database, the HTBH38/4 database of barrier height for hydrogen-transfer reactions, five noncovalent databases, two databases involving metal-metal and metal-ligand bond energies, a dipole moment database, a database of four alkyl bond dissociation energies of alkanes and ethers, and three total energies of one-electron systems. We also tested the new functionals and 12 others for eight hydrogen-bonding and stacking interaction energies in nucleobase pairs, and we tested M05 and M05-2X and 19 other functionals for the geometry, dipole moment, and binding energy of HCN-BF3, which has recently been shown to be a very difficult case for density functional theory. We tested eight functionals for four more alkyl bond dissociation energies, and we tested 12 functionals for several additional bond energies with varying amounts of multireference character. On the basis of all the results for 256 data values in 18 databases in the present study, we recommend M05-2X, M05, PW6B95, PWB6K, and MPWB1K for general-purpose applications in thermochemistry, kinetics, and noncovalent interactions involving nonmetals and we recommend M05 for studies involving both metallic and nonmetallic elements. The M05 functional, essentially uniquely among the functionals with broad applicability to chemistry, also performs well not only for main-group thermochemistry and radical reaction barrier heights but also for transition-metal-transition-metal interactions. The M05-2X functional has the best performance for thermochemical kinetics, noncovalent interactions (especially weak interaction, hydrogen bonding, π···π stacking, and interactions energies of nucleobases), and alkyl bond dissociation energies and the best composite results for energetics, excluding metals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antifungal agents: mechanisms of action

            Clinical needs for novel antifungal agents have altered steadily with the rise and fall of AIDS-related mycoses, and the change in spectrum of fatal disseminated fungal infections that has accompanied changes in therapeutic immunosuppressive therapies. The search for new molecular targets for antifungals has generated considerable research using modern genomic approaches, so far without generating new agents for clinical use. Meanwhile, six new antifungal agents have just reached, or are approaching, the clinic. Three are new triazoles, with extremely broad antifungal spectra, and three are echinocandins, which inhibit synthesis of fungal cell wall polysaccharides--a new mode of action. In addition, the sordarins represent a novel class of agents that inhibit fungal protein synthesis. This review describes the targets and mechanisms of action of all classes of antifungal agents in clinical use or with clinical potential.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A complete basis set model chemistry. VII. Use of the minimum population localization method

                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                13 October 2019
                October 2019
                : 24
                : 20
                : 3683
                Affiliations
                Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
                Author notes
                [* ]Correspondence: beata.liberek@ 123456ug.edu.pl ; Tel.: + 48-58-5235071; Fax: + 48-58-5235012
                Author information
                https://orcid.org/0000-0001-7661-308X
                Article
                molecules-24-03683
                10.3390/molecules24203683
                6832121
                31614932
                ec4a6ed3-d694-4ef4-8827-6069771be84e
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 August 2019
                : 11 October 2019
                Categories
                Article

                5-fluorouracil,protonation,deprotonation,charge delocalisation,pka value,dft methods

                Comments

                Comment on this article