227
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role played by cell-substrate interactions in the pathogenesis of osteoclast-mediated peri-implant osteolysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prosthetic wear debris-induced peri-implant osteolysis is a major cause of aseptic loosening after total joint replacement. In this condition, wear particles released from the implant components induce a granulomatous inflammatory reaction at the interface between implant and adjacent bone, leading to progressive bone resorption and loss of fixation. The present study was undertaken to characterize definitively the phenotype of osteoclast-like cells associated with regions of peri-implant focal bone resorption and to compare the phenotypic features of these cells with those of mononucleated and multinucleated cells associated with polyethylene wear particles. Peri-implant tissues were obtained from patients undergoing hip revision surgery for aseptic loosening after total joint replacement. Cells were examined for the expression of several markers associated with the osteoclast phenotype using immunohistochemistry, histochemistry, and/or in situ hybridization. CD68 protein, a marker expressed by multiple macrophage lineage cell types, was detected in mononucleated and multinucleated cells associated with polyethylene particles and the bone surface. Cathepsin K and tartrate-resistant acid phosphatase were expressed highly in both mononucleated and multinucleated cells associated with the bone surface. Levels of expression were much lower in cells associated with polyethylene particles. High levels of β 3 integrin protein were detected in cells in contact with bone. Multinucleated cells associated with polyethylene particles exhibited faint positive staining. Calcitonin receptor mRNA expression was detected solely in multinucleated cells present in resorption lacunae on the bone surface and was absent in cells associated with polyethylene particles. Our findings provide further evidence that cells expressing the full repertoire of osteoclast phenotypic markers are involved in the pathogenesis of peri-implant osteolysis after total joint replacement. They also demonstrate that foreign body giant cells, although believed to be phenotypically and functionally distinct from osteoclasts, express many osteoclast-associated genes and gene products. However, the levels and patterns of expression of these genes in the two cell types differ. We speculate that, in addition to the role of cytokines and growth factors, the substrate with which these cells interact plays a critical role in their differential phenotypic and functional properties.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          "Modes of failure" of cemented stem-type femoral components: a radiographic analysis of loosening.

          In view of the increasing incidence of stem-type femoral component loosening, a detailed retrospective radiographic zonal analysis of 389 total hip replacements indicated a 19.5% incidence (76 hips) of radiological evidences of mechanical looseness, i.e., fractured acrylic cement and/or a radiolucent gap at the stem-cement or cement-bone interfaces. Detailed serial radiographic examination demonstrated progressive loosening in 56 of the 76 hips and these were categorized into mechanical modes of failure. The 4 modes of failure characterizing stem-type component progressive loosening mechanisms consisted of stem pistoning within the acrylic (3.3%), cement-embedded stem pistoning with the femur (5.1%), medial midstem pivot (2.5%), calcar pivot (0.7%) and bending (fatigue) cantilever (3.3%).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor.

            Osteoclast differentiation factor (ODF; also known as osteoprotegerin ligand, receptor activator of nuclear factor kappaB ligand, and tumor necrosis factor-related activation-induced cytokine) is a recently described cytokine known to be critical in inducing the differentiation of cells of the monocyte/macrophage lineage into osteoclasts. The role of osteoclasts in bone erosion in rheumatoid arthritis (RA) has been demonstrated, but the exact mechanisms involved in the formation and activation of osteoclasts in RA are not known. These studies address the potential role of ODF and the bone and marrow microenvironment in the pathogenesis of osteoclast-mediated bone erosion in RA. Tissue sections from the bone-pannus interface at sites of bone erosion were examined for the presence of osteoclast precursors by the colocalization of messenger RNA (mRNA) for tartrate-resistant acid phosphatase (TRAP) and cathepsin K in mononuclear cells. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to identify mRNA for ODF in synovial tissues, adherent synovial fibroblasts, and activated T lymphocytes derived from patients with RA. Multinucleated cells expressing both TRAP and cathepsin K mRNA were identified in bone resorption lacunae in areas of pannus invasion into bone in RA patients. In addition, mononuclear cells expressing both TRAP and cathepsin K mRNA (preosteoclasts) were identified in bone marrow in and adjacent to areas of pannus invasion in RA erosions. ODF mRNA was detected by RT-PCR in whole synovial tissues from patients with RA but not in normal synovial tissues. In addition, ODF mRNA was detected in cultured adherent synovial fibroblasts and in activated T lymphocytes derived from RA synovial tissue, which were expanded by exposure to anti-CD3. TRAP-positive, cathepsin K-positive osteoclast precursor cells are identified in areas of pannus invasion into bone in RA. ODF is expressed by both synovial fibroblasts and by activated T lymphocytes derived from synovial tissues from patients with RA. These synovial cells may contribute directly to the expansion of osteoclast precursors and to the formation and activation of osteoclasts at sites of bone erosion in RA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency.

              Pycnodysostosis, an autosomal recessive osteochondrodysplasia characterized by osteosclerosis and short stature, maps to chromosome 1q21. Cathepsin K, a cysteine protease gene that is highly expressed in osteoclasts, localized to the pycnodysostosis region. Nonsense, missense, and stop codon mutations in the gene encoding cathepsin K were identified in patients. Transient expression of complementary DNA containing the stop codon mutation resulted in messenger RNA but no immunologically detectable protein. Thus, pycnodysostosis results from gene defects in a lysosomal protease with highest expression in osteoclasts. These findings suggest that cathepsin K is a major protease in bone resorption, providing a possible rationale for the treatment of disorders such as osteoporosis and certain forms of arthritis.
                Bookmark

                Author and article information

                Journal
                Arthritis Res Ther
                Arthritis Research & Therapy
                BioMed Central (London )
                1478-6354
                1478-6362
                2006
                13 April 2006
                : 8
                : 3
                : R70
                Affiliations
                [1 ]New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
                [2 ]Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
                [3 ]Department of Orthopedics, New England Baptist Hospital, Boston, Massachusetts, USA
                Article
                ar1938
                10.1186/ar1938
                1526628
                16613614
                ec5aa965-8c34-4c53-be25-862ba0d440cf
                Copyright © 2006 Shen et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 January 2006
                : 15 February 2006
                : 22 February 2006
                : 14 March 2006
                Categories
                Research Article

                Orthopedics
                Orthopedics

                Comments

                Comment on this article