Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An integrated framework for the role of oxytocin in multistage social decision-making

      1 , 1 , 2 , 3 , 4
      American Journal of Primatology
      Wiley

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Interest in the effects of oxytocin on social behavior has persisted even as an overarching theory describing these effects has remained largely elusive. Some of the earliest studies on the effects of oxytocin on social decision-making indicated that oxytocin might enhance prosocial actions directed towards others. This led to development of the prosocial hypothesis, which stipulates that oxytocin specifically enhances prosocial choices. However, further work indicated that oxytocin administration could elicit antisocial behaviors as well in certain social situations, highlighting the importance of context-dependent effects. At least two prominent hypotheses have been used to explain these seemingly contradictory findings. The social salience hypothesis indicates that the effects of oxytocin can be conceptualized as a general increase in the salience of social stimuli in the environment. Distinctly, the approach/withdrawal hypothesis stipulates that oxytocin enhances approach behaviors and decreases withdrawal behaviors. These phenomenologically motivated hypotheses regarding the effects of oxytocin on social behavior have created controversies in the field. In this review, we present a multistage framework of social decision-making designed to unify these disparate theories in a process common to all social decisions. We conceptualize this process as involving multiple distinct computational steps, including sensory input, sensory perception, valuation, decision formulation, and behavioral output. Iteratively, these steps generate social behaviors, and oxytocin could be acting on any of these steps to exert its effects. In support of this framework, we examine both behavioral and neural evidence across rodents, non-human primates, and humans, determining at what point in our multistage framework oxytocin could be eliciting its socially relevant effects. Finally, we postulate based on our framework that the prosocial, social salience, and approach/withdrawal hypotheses may not be mutually exclusive and could explain the influence of oxytocin on social behavior to different extents depending on context. </p><p id="P2"> <div class="figure-container so-text-align-c"> <img alt="" class="figure" src="/document_file/f1e80e62-e733-483b-b352-2e2c4ba194b8/PubMedCentral/image/nihms932964u1.jpg"/> </div> </p>

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Oxytocin, vasopressin, and the neurogenetics of sociality.

          There is growing evidence that the neuropeptides oxytocin and vasopressin modulate complex social behavior and social cognition. These ancient neuropeptides display a marked conservation in gene structure and expression, yet diversity in the genetic regulation of their receptors seems to underlie natural variation in social behavior, both between and within species. Human studies are beginning to explore the roles of these neuropeptides in social cognition and behavior and suggest that variation in the genes encoding their receptors may contribute to variation in human social behavior by altering brain function. Understanding the neurobiology and neurogenetics of social cognition and behavior has important implications, both clinically and for society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Social reward requires coordinated activity of accumbens oxytocin and 5HT

            Social behaviors in species as diverse as honey bees and humans promote group survival but often come at some cost to the individual. Although reinforcement of adaptive social interactions is ostensibly required for the evolutionary persistence of these behaviors, the neural mechanisms by which social reward is encoded by the brain are largely unknown. Here we demonstrate that in mice oxytocin (OT) acts as a social reinforcement signal within the nucleus accumbens (NAc) core, where it elicits a presynaptically expressed long-term depression of excitatory synaptic transmission in medium spiny neurons. Although the NAc receives OT receptor-containing inputs from several brain regions, genetic deletion of these receptors specifically from dorsal raphe nucleus, which provides serotonergic (5-HT) innervation to the NAc, abolishes the reinforcing properties of social interaction. Furthermore, OT-induced synaptic plasticity requires activation of NAc 5-HT1b receptors, the blockade of which prevents social reward. These results demonstrate that the rewarding properties of social interaction in mice require the coordinated activity of OT and 5-HT in the NAc, a mechanistic insight with implications for understanding the pathogenesis of social dysfunction in neuropsychiatric disorders such as autism.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The role of the amygdala in fear and anxiety.

              M DAVIS (1992)
                Bookmark

                Author and article information

                Journal
                American Journal of Primatology
                Am J Primatol
                Wiley
                02752565
                January 19 2018
                : e22735
                Affiliations
                [1 ]Interdepartmental Neuroscience Program; Yale University School of Medicine; New Haven Connecticut
                [2 ]Department of Psychology; Yale University; New Haven Connecticut
                [3 ]Department of Neuroscience; Yale University School of Medicine; New Haven Connecticut
                [4 ]Kavli Institute for Neuroscience; Yale University School of Medicine; New Haven Connecticut
                Article
                10.1002/ajp.22735
                6053333
                29350419
                ec888d0c-88c2-4f20-a5e9-b70933da56b3
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article