Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pulmonary alveolar proteinosis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d9988882e200">Pulmonary alveolar proteinosis (PAP) is a syndrome characterized by the accumulation of alveolar surfactant and dysfunction of alveolar macrophages. PAP results in progressive dyspnoea of insidious onset, hypoxaemic respiratory failure, secondary infections and pulmonary fibrosis. PAP can be classified into different types on the basis of the pathogenetic mechanism: primary PAP is characterized by the disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) signalling and can be autoimmune (caused by elevated levels of GM-CSF autoantibodies) or hereditary (due to mutations in CSF2RA or CSF2RB, encoding GM-CSF receptor subunits); secondary PAP results from various underlying conditions; and congenital PAP is caused by mutations in genes involved in surfactant production. In most patients, pathogenesis is driven by reduced GM-CSF-dependent cholesterol clearance in alveolar macrophages, which impairs alveolar surfactant clearance. PAP has a prevalence of at least 7 cases per million individuals in large population studies and affects men, women and children of all ages, ethnicities and geographical locations irrespective of socioeconomic status, although it is more-prevalent in smokers. Autoimmune PAP accounts for &gt;90% of all cases. Management aims at improving symptoms and quality of life; whole-lung lavage effectively removes excessive surfactant. Novel pathogenesis-based therapies are in development, targeting GM-CSF signalling, immune modulation and cholesterol homeostasis. </p>

          Related collections

          Most cited references158

          • Record: found
          • Abstract: found
          • Article: not found

          ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation.

          Here we demonstrate that the ABC transporter ABCG1 plays a critical role in lipid homeostasis by controlling both tissue lipid levels and the efflux of cellular cholesterol to HDL. Targeted disruption of Abcg1 in mice has no effect on plasma lipids but results in massive accumulation of both neutral lipids and phospholipids in hepatocytes and in macrophages within multiple tissues following administration of a high-fat and -cholesterol diet. In contrast, overexpression of human ABCG1 protects murine tissues from dietary fat-induced lipid accumulation. Finally, we show that cholesterol efflux to HDL specifically requires ABCG1, whereas efflux to apoA1 requires ABCA1. These studies identify Abcg1 as a key gene involved in both cholesterol efflux to HDL and in tissue lipid homeostasis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A mutation in the surfactant protein C gene associated with familial interstitial lung disease.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pulmonary alveolar proteinosis: progress in the first 44 years.

              Pulmonary alveolar proteinosis is a rare clinical syndrome that was first described in 1958. Subsequently, over 240 case reports and small series have described at least 410 cases in the literature. Characterized by the alveolar accumulation of surfactant components with minimal interstitial inflammation or fibrosis, pulmonary alveolar proteinosis has a variable clinical course ranging from spontaneous resolution to death with pneumonia or respiratory failure. The most effective proven treatment--whole lung lavage--was described soon after the first recognition of this disease. In the last 8 years, there has been rapid progress toward elucidation of the molecular mechanisms underlying both the congenital and acquired forms of pulmonary alveolar proteinosis, following serendipitous discoveries in gene-targeted mice lacking granulocyte-macrophage colony-stimulating factor (GM-CSF). Impairment of surfactant clearance by alveolar macrophages as a result of inhibition of the action of GM-CSF by blocking autoantibodies may underlie many acquired cases, whereas congenital disease is most commonly attributable to mutations in surfactant protein genes but may also be caused by GM-CSF receptor defects. Therapy with GM-CSF has shown promise in approximately half of those acquired cases treated, but it is unsuccessful in congenital forms of the disease, consistent with the known differences in disease pathogenesis.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Disease Primers
                Nat Rev Dis Primers
                Springer Nature
                2056-676X
                December 2019
                March 7 2019
                December 2019
                : 5
                : 1
                Article
                10.1038/s41572-019-0066-3
                30846703
                ec9bd486-d739-4e96-906b-6b05500714d9
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article