Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In-season internal and external training load quantification of an elite European soccer team

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Elite soccer teams that participate in European competitions need to have players in the best physical and psychological status possible to play matches. As a consequence of congestive schedule, controlling the training load (TL) and thus the level of effort and fatigue of players to reach higher performances during the matches is therefore critical. Therefore, the aim of the current study was to provide the first report of seasonal internal and external training load that included Hooper Index (HI) scores in elite soccer players during an in-season period. Nineteen elite soccer players were sampled, using global position system to collect total distance, high-speed distance (HSD) and average speed (AvS). It was also collected session rating of perceived exertion (s-RPE) and HI scores during the daily training sessions throughout the 2015–2016 in-season period. Data were analysed across ten mesocycles (M: 1 to 10) and collected according to the number of days prior to a one-match week. Total daily distance covered was higher at the start (M1 and M3) compared to the final mesocycle (M10) of the season. M1 (5589m) reached a greater distance than M5 (4473m) (ES = 9.33 [12.70, 5.95]) and M10 (4545m) (ES = 9.84 [13.39, 6.29]). M3 (5691m) reached a greater distance than M5 (ES = 9.07 [12.36, 5.78]), M7 (ES = 6.13 [8.48, 3.79]) and M10 (ES = 9.37 [12.76, 5.98]). High-speed running distance was greater in M1 (227m), than M5 (92m) (ES = 27.95 [37.68, 18.22]) and M10 (138m) (ES = 8.46 [11.55, 5.37]). Interestingly, the s-RPE response was higher in M1 (331au) in comparison to the last mesocycle (M10, 239au). HI showed minor variations across mesocycles and in days prior to the match. Every day prior to a match, all internal and external TL variables expressed significant lower values to other days prior to a match (p<0.01). In general, there were no differences between player positions.

          Conclusions: Our results reveal that despite the existence of some significant differences between mesocycles, there were minor changes across the in-season period for the internal and external TL variables used. Furthermore, it was observed that MD-1 presented a reduction of external TL (regardless of mesocycle) while internal TL variables did not have the same record during in-season match-day-minus.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Monitoring Training Load to Understand Fatigue in Athletes

          Many athletes, coaches, and support staff are taking an increasingly scientific approach to both designing and monitoring training programs. Appropriate load monitoring can aid in determining whether an athlete is adapting to a training program and in minimizing the risk of developing non-functional overreaching, illness, and/or injury. In order to gain an understanding of the training load and its effect on the athlete, a number of potential markers are available for use. However, very few of these markers have strong scientific evidence supporting their use, and there is yet to be a single, definitive marker described in the literature. Research has investigated a number of external load quantifying and monitoring tools, such as power output measuring devices, time-motion analysis, as well as internal load unit measures, including perception of effort, heart rate, blood lactate, and training impulse. Dissociation between external and internal load units may reveal the state of fatigue of an athlete. Other monitoring tools used by high-performance programs include heart rate recovery, neuromuscular function, biochemical/hormonal/immunological assessments, questionnaires and diaries, psychomotor speed, and sleep quality and quantity. The monitoring approach taken with athletes may depend on whether the athlete is engaging in individual or team sport activity; however, the importance of individualization of load monitoring cannot be over emphasized. Detecting meaningful changes with scientific and statistical approaches can provide confidence and certainty when implementing change. Appropriate monitoring of training load can provide important information to athletes and coaches; however, monitoring systems should be intuitive, provide efficient data analysis and interpretation, and enable efficient reporting of simple, yet scientifically valid, feedback.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-intensity running in English FA Premier League soccer matches.

            The aims of this study were to (1) determine the activity profiles of a large sample of English FA Premier League soccer players and (2) examine high-intensity running during elite-standard soccer matches for players in various playing positions. Twenty-eight English FA Premier League games were analysed during the 2005-2006 competitive season (n=370), using a multi-camera computerised tracking system. During a typical match, wide midfielders (3138 m, s=565) covered a greater distance in high-intensity running than central midfielders (2825 m, s= 73, P=0.04), full-backs (2605 m, s=387, P < 0.01), attackers (2341 m, s=575, P < 0.01), and central defenders (1834 m, s=256, P < 0.01). In the last 15 min of a game, high-intensity running distance was approximately 20% less than in the first 15-min period for wide midfielders (467 m, s=104 vs. 589 m, s=134, P < 0.01), central midfielders (429 m, s=106 vs. 534 m, s=99, P < 0.01), full-backs (389 m, s=95 vs. 481 m, s=114, P < 0.01), attackers (348 m, s=105 vs. 438 m, s=129, P < 0.01), and central defenders (276 m, s=93 vs. 344 m, s=80, P < 0.01). There was a similar distance deficit for high-intensity running with (148 m, s=78 vs. 193 m, s=96, P < 0.01) and without ball possession (229 m, s=85 vs. 278 m, s=97, P < 0.01) between the last 15-min and first 15-min period of the game. Mean recovery time between very high-intensity running bouts was 72 s (s=28), with a 28% longer recovery time during the last 15 min than the first 15 min of the game (83 s, s=26 vs. 65 s, s=20, P < 0.01). The decline in high-intensity running immediately after the most intense 5-min period was more evident in attackers (216 m, s=50 vs. 113 m, s=47, P < 0.01) and central defenders (182 m, s=26 vs. 96 m, s=39, P < 0.01). The results suggest that high-intensity running with and without ball possession is reduced during various phases of elite-standard soccer matches and the activity profiles and fatigue patterns vary among playing positions. The current findings provide valuable information about the high-intensity running patterns of a large sample of elite-standard soccer players, which could be useful in the development and prescription of specific training regimes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of high intensity activity in Premier League soccer.

              The aim of the present investigation was to provide a detailed analysis of the high intensity running activity completed by elite soccer players during match-play. A further aim of the study was to evaluate the importance of high intensity running activity to overall team success. Observations on individual match performance measures were undertaken on 563 outfield players (median of 8 games per player; range=1-57) competing in the English Premier League from 2003/2004 to 2005/2006 using a computerised tracking system (Prozone, Leeds, England). High intensity activities selected for analysis included total high intensity running distance (THIR), total sprint distance (TSD) and the number and type of sprints undertaken. Total high intensity running distance in possession and without possession of the ball was also analysed. The THIR was dependant upon playing position with wide midfield (1,049+/-106 m) and central defenders (681+/-128 m) completing the highest and lowest distance respectively (p<0.001). High intensity activity was also related to team success with teams finishing in the bottom five (919+/-128 m) and middle ten (917+/-143 m) league positions completing significantly more THIR compared with teams in the top five (885+/-113 m) (p=0.003). The THIR and TSD also significantly declined during the 2nd half with the greatest decrements observed in wide midfield and attacking players (p<0.05). Both positional differences in high intensity activity and the observed change in activity throughout the game were also influenced by team success (p<0.05). The results of the present study indicate that high intensity activity in elite soccer match-play is influenced by both playing position and previous activity in the game. These activity patterns are also dependant upon success of the team. This may indicate that overall technical and tactical effectiveness of the team rather than high levels of physical performance per se are more important in determining success in soccer.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ResourcesRole: Writing – original draft
                Role: Data curation
                Role: Funding acquisitionRole: Resources
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                22 April 2019
                2019
                : 14
                : 4
                : e0209393
                Affiliations
                [1 ] Sports Science School of Rio Maior–Polytechnic Institute of Santarém, Rio Maior, Portugal
                [2 ] Research Centre in Sport Sciences, Health Sciences and Human Development, Vila Real, Portugal
                [3 ] Life Quality Research Centre, Santarém, Portugal
                [4 ] Department of Sports Sciences, University of Beira Interior, Covilhã, Portugal
                [5 ] Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
                [6 ] Football Association of Castelo Branco, Castelo Branco, Portugal
                Instituto Politecnico de Viana do Castelo, PORTUGAL
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-6671-6229
                http://orcid.org/0000-0003-1524-5601
                Article
                PONE-D-18-33971
                10.1371/journal.pone.0209393
                6476476
                31009464
                ecaec612-a280-4281-8773-491323682040
                © 2019 Oliveira et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 November 2018
                : 22 March 2019
                Page count
                Figures: 4, Tables: 4, Pages: 18
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001871, Fundação para a Ciência e a Tecnologia;
                Award ID: UID/DTP/04045/2013
                The authors state that there were no salaries’ fund from a tobacco company. Also, the authors are not aware of any competing interests. This project was supported by the National Funds through FCT—Portuguese Foundation for Science and Technology (UID/DTP/04045/2013)—and the European Fund for Regional Development (FEDER) allocated by European Union through the COMPETE 2020 Programme (POCI-01-0145-FEDER-006969)—competitiveness and internationalization (POCI). All funding received for this work from any of the following organizations: National Institutes of Health (NIH); Welcome Trust; Howard Hughes Medical Institute (HHMI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                Due to issues of participant consent and confidentiality issues with the soccer club involved in this study, data will not be shared publicly. Data are available from the Research Center in Sports Sciences, Health Sciences and Human Development Institutional Data Access / Ethics Committee. (contact via https://cidesd.utad.pt/contacts/) for researchers who meet the criteria for access to confidential data.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article