25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analyzing the Behavior of Neuronal Pathways in Alzheimer's Disease Using Petri Net Modeling Approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's Disease (AD) is the most common neuro-degenerative disorder in the elderly that leads to dementia. The hallmark of AD is senile lesions made by abnormal aggregation of amyloid beta in extracellular space of brain. One of the challenges in AD treatment is to better understand the mechanism of action of key proteins and their related pathways involved in neuronal cell death in order to identify adequate therapeutic targets. This study focuses on the phenomenon of aggregation of amyloid beta into plaques by considering the signal transduction pathways of Calpain-Calpastatin (CAST) regulation system and Amyloid Precursor Protein (APP) processing pathways along with Ca 2+ channels. These pathways are modeled and analyzed individually as well as collectively through Stochastic Petri Nets for comprehensive analysis and thorough understating of AD. The model predicts that the deregulation of Calpain activity, disruption of Calcium homeostasis, inhibition of CAST and elevation of abnormal APP processing are key cytotoxic events resulting in an early AD onset and progression. Interestingly, the model also reveals that plaques accumulation start early (at the age of 40) in life but symptoms appear late. These results suggest that the process of neuro-degeneration can be slowed down or paused by slowing down the degradation rate of Calpain-CAST Complex. In the light of this study, the suggestive therapeutic strategy might be the prevention of the degradation of Calpain-CAST complexes and the inhibition of Calpain for the treatment of neurodegenerative diseases such as AD.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          The calpain system.

          The calpain system originally comprised three molecules: two Ca2+-dependent proteases, mu-calpain and m-calpain, and a third polypeptide, calpastatin, whose only known function is to inhibit the two calpains. Both mu- and m-calpain are heterodimers containing an identical 28-kDa subunit and an 80-kDa subunit that shares 55-65% sequence homology between the two proteases. The crystallographic structure of m-calpain reveals six "domains" in the 80-kDa subunit: 1). a 19-amino acid NH2-terminal sequence; 2). and 3). two domains that constitute the active site, IIa and IIb; 4). domain III; 5). an 18-amino acid extended sequence linking domain III to domain IV; and 6). domain IV, which resembles the penta EF-hand family of polypeptides. The single calpastatin gene can produce eight or more calpastatin polypeptides ranging from 17 to 85 kDa by use of different promoters and alternative splicing events. The physiological significance of these different calpastatins is unclear, although all bind to three different places on the calpain molecule; binding to at least two of the sites is Ca2+ dependent. Since 1989, cDNA cloning has identified 12 additional mRNAs in mammals that encode polypeptides homologous to domains IIa and IIb of the 80-kDa subunit of mu- and m-calpain, and calpain-like mRNAs have been identified in other organisms. The molecules encoded by these mRNAs have not been isolated, so little is known about their properties. How calpain activity is regulated in cells is still unclear, but the calpains ostensibly participate in a variety of cellular processes including remodeling of cytoskeletal/membrane attachments, different signal transduction pathways, and apoptosis. Deregulated calpain activity following loss of Ca2+ homeostasis results in tissue damage in response to events such as myocardial infarcts, stroke, and brain trauma.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ca(2+) homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling.

              Cellular Ca(2+) homeostasis is maintained through the integrated and coordinated function of Ca(2+) transport molecules, Ca(2+) buffers and sensors. These molecules are associated with the plasma membrane and different cellular compartments, such as the cytoplasm, nucleus, mitochondria, and cellular reticular network, including the endoplasmic reticulum (ER) to control free and bound Ca(2+) levels in all parts of the cell. Loss of nutrients/energy leads to the loss of cellular homeostasis and disruption of Ca(2+) signaling in both the reticular network and cytoplasmic compartments. As an integral part of cellular physiology and pathology, this leads to activation of ER stress coping responses, such as the unfolded protein response (UPR), and mobilization of pathways to regain ER homeostasis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neuroinform
                Front Neuroinform
                Front. Neuroinform.
                Frontiers in Neuroinformatics
                Frontiers Media S.A.
                1662-5196
                23 May 2018
                2018
                : 12
                : 26
                Affiliations
                [1] 1Research Center for Modeling and Simulation, National University of Sciences and Technology , Islamabad, Pakistan
                [2] 2Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology , Islamabad, Pakistan
                [3] 3Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical Sciences, University of Karachi , Karachi, Pakistan
                Author notes

                Edited by: Athanasios Alexiou, Novel Global Community Educational Foundation (NGCEF), Hebersham, Australia

                Reviewed by: Faez Iqbal Khan, Rhodes University, South Africa; Hong Qing, Beijing Institute of Technology, China

                *Correspondence: Jamil Ahmad jamil.ahmad@ 123456rcms.nust.edu.pk
                Article
                10.3389/fninf.2018.00026
                5974338
                ed230068-066b-420d-81ad-b71c2244fdfa
                Copyright © 2018 Ashraf, Ahmad, Ali and Ul-Haq.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 December 2017
                : 30 April 2018
                Page count
                Figures: 20, Tables: 5, Equations: 1, References: 112, Pages: 25, Words: 12256
                Categories
                Neuroscience
                Original Research

                Neurosciences
                calpain,cast,calcium,pkc,app,stochastic petri net,alzheimer disease,amyloid beta
                Neurosciences
                calpain, cast, calcium, pkc, app, stochastic petri net, alzheimer disease, amyloid beta

                Comments

                Comment on this article