40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bacterial polysaccharide synthesis and gene nomenclature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene nomenclature for bacterial surface polysaccharides is complicated by the large number of structures and genes. We propose a scheme applicable to all species that distinguishes different classes of genes, provides a single name for all genes of a given function and greatly facilitates comparative studies.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: not found
          • Article: not found

          Biochemistry of endotoxins.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid.

            Colanic acid (CA) is an extracellular polysaccharide produced by most Escherichia coli strains as well as by other species of the family Enterobacteriaceae. We have determined the sequence of a 23-kb segment of the E. coli K-12 chromosome which includes the cluster of genes necessary for production of CA. The CA cluster comprises 19 genes. Two other sequenced genes (orf1.3 and galF), which are situated between the CA cluster and the O-antigen cluster, were shown to be unnecessary for CA production. The CA cluster includes genes for synthesis of GDP-L-fucose, one of the precursors of CA, and the gene for one of the enzymes in this pathway (GDP-D-mannose 4,6-dehydratase) was identified by biochemical assay. Six of the inferred proteins show sequence similarity to glycosyl transferases, and two others have sequence similarity to acetyl transferases. Another gene (wzx) is predicted to encode a protein with multiple transmembrane segments and may function in export of the CA repeat unit from the cytoplasm into the periplasm in a process analogous to O-unit export. The first three genes of the cluster are predicted to encode an outer membrane lipoprotein, a phosphatase, and an inner membrane protein with an ATP-binding domain. Since homologs of these genes are found in other extracellular polysaccharide gene clusters, they may have a common function, such as export of polysaccharide from the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster.

              Escherichia coli K-12 has long been known not to produce an O antigen. We recently identified two independent mutations in different lineages of K-12 which had led to loss of O antigen synthesis (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994) and constructed a strain with all rfb (O antigen) genes intact which synthesized a variant of O antigen O16, giving cross-reaction with anti-O17 antibody. We determined the structure of this O antigen to be -->2)-beta-D-Galf-(1-->6)-alpha-D-Glcp- (1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-GlcpNAc-(1-->, with an O-acetyl group on C-2 of the rhamnose and a side chain alpha-D-Glcp on C-6 of GlcNAc. O antigen synthesis is rfe dependent, and D-GlcpNAc is the first sugar of the biological repeat unit. We sequenced the rfb (O antigen) gene cluster and found 11 open reading frames. Four rhamnose pathway genes are identified by similarity to those of other strains, the rhamnose transferase gene is identified by assay of its product, and the identities of other genes are predicted with various degrees of confidence. We interpret earlier observations on interaction between the rfb region of Escherichia coli K-12 and those of E. coli O4 and E. coli Flexneri. All K-12 rfb genes were of low G+C content for E. coli. The rhamnose pathway genes were similar in sequence to those of (Shigella) Dysenteriae 1 and Flexneri, but the other genes showed distant or no similarity. We suggest that the K-12 gene cluster is a member of a family of rfb gene clusters, including those of Dysenteriae 1 and Flexneri, which evolved outside E. coli and was acquired by lateral gene transfer.
                Bookmark

                Author and article information

                Journal
                Trends in Microbiology
                Trends in Microbiology
                Elsevier BV
                0966842X
                December 1996
                December 1996
                : 4
                : 12
                : 495-503
                Article
                10.1016/S0966-842X(97)82912-5
                9004408
                ef8997e0-56d8-4b27-b17e-00fe6ceb6825
                © 1996

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article