4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          P. nigrum L. extracts and the piperine alkaloid have important antimicrobial, anti-inflammatory, and antioxidant properties. Therefore, in this study, we evaluated the antimicrobial activity and cytotoxicity of P. nigrum L. extracts and piperine, a compound isolated from the extracts of P. nigrum L. Extracts obtained via maceration, soxhlet, and purification steps, in addition to isolated piperine, were used in this study. Spectroscopic methods, such as nuclear magnetic resonance, scanning electron microscopy, X-ray diffraction, thermogravimetry, and differential scanning calorimetry, were used to characterize piperine. In the microbiological analyses, the extract obtained via maceration-derived sample showed high efficiency in inhibiting Salmonella spp. (MIC < 100 μg/mL). The extract obtained via a soxhlet-derived sample showed promising inhibitory activity against almost all microorganisms, with negligible inhibition of Pseudomonas aeruginosa. Favorable inhibition coefficients were also observed against Staphylococcus aureus and Salmonella spp. (MIC < 100 μg/mL) for the extract obtained via purification of the steps-derived sample. Piperine showed an excellent inhibition coefficient against most microorganisms, with inactivity only observed against P. aeruginosa. Cytotoxicity evaluation assays in cancer cell lines revealed that piperine exhibited inhibitory potential on all tested tumor cell lines, causing a decrease in cell viability and achieving an IC50 of less than 30 μg/mL. The analyzed extracts from P. nigrum L. seeds showed cytotoxic activity against tumor and non-tumor cell lines.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria.

            J Eloff (1998)
            Agar diffusion techniques are used widely to assay plant extracts for antimicrobial activity, but there are problems associated with this technique. A micro-dilution technique was developed using 96-well microplates and tetrazolium salts to indicate bacterial growth. p-Iodonitrotetrazolium violet [0.2 mg/ml] gave better results than tetrazolium red or thiazolyl blue. The method is quick, worked well with Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli and with non-aqueous extracts from many different plants. The method gave reproducible results; required only 10-25 microliters of extract to determine minimal inhibitory concentrations, distinguished between microcidal and microstatic effects, and provided a permanent record of the results. Using S. aureus, and a Combretum molle extract, the technique was 32 times more sensitive than agar diffusion techniques and was not sensitive to culture age of the test organism up to 24 hours. The S. aureus culture could be stored up to 10 days in a cold room with little effect on the assay results. This method was useful in screening plants for antimicrobial activity and for the bioassay-guided isolation of antimicrobial compounds from plants. MIC values determined for sulfisoxazole, norfloxacin, gentamicin, and nitrofuratoin were similar to values indicated in the literature but values obtained with trimethroprim and ampicillin were higher with some bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants

              Antibiotic-resistant microorganisms have been an ever-growing concern over the past years. This has led researchers to direct their attention onto plants to be able to discover new possible antimicrobial compounds. The Middle East encompasses a wide spectrum of plant diversity with over 20,000 different species in habitats ranging from deserts to snow-capped mountains. Several plant secondary metabolites and their derivatives have been identified as possible antimicrobial agents. Among the secondary metabolites studied, alkaloids and polyphenols have shown strong antimicrobial activity. Polyphenols are one of the most numerous and diverse group of secondary metabolites; their antioxidant properties provide the basis for antimicrobial effects. Alkaloids provided the underlying structure for the development of several antibiotics with a diverse range of action. The ability of some plant secondary metabolites to act as resistance-modifying agents is a promising field in mitigating the spread of bacterial resistance.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SEPAF2
                Separations
                Separations
                MDPI AG
                2297-8739
                January 2023
                December 30 2022
                : 10
                : 1
                : 21
                Article
                10.3390/separations10010021
                f0158401-dd63-41b3-8ac1-4cda883efd20
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article