31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Bromodomain and Extra-Terminal Domain (BET) Family: Functional Anatomy of BET Paralogous Proteins

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Bromodomain and Extra-Terminal Domain (BET) family of proteins is characterized by the presence of two tandem bromodomains and an extra-terminal domain. The mammalian BET family of proteins comprises BRD2, BRD3, BRD4, and BRDT, which are encoded by paralogous genes that may have been generated by repeated duplication of an ancestral gene during evolution. Bromodomains that can specifically bind acetylated lysine residues in histones serve as chromatin-targeting modules that decipher the histone acetylation code. BET proteins play a crucial role in regulating gene transcription through epigenetic interactions between bromodomains and acetylated histones during cellular proliferation and differentiation processes. On the other hand, BET proteins have been reported to mediate latent viral infection in host cells and be involved in oncogenesis. Human BRD4 is involved in multiple processes of the DNA virus life cycle, including viral replication, genome maintenance, and gene transcription through interaction with viral proteins. Aberrant BRD4 expression contributes to carcinogenesis by mediating hyperacetylation of the chromatin containing the cell proliferation-promoting genes. BET bromodomain blockade using small-molecule inhibitors gives rise to selective repression of the transcriptional network driven by c-MYC These inhibitors are expected to be potential therapeutic drugs for a wide range of cancers. This review presents an overview of the basic roles of BET proteins and highlights the pathological functions of BET and the recent developments in cancer therapy targeting BET proteins in animal models.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          The Hox genes and their roles in oncogenesis.

          Hox genes, a highly conserved subgroup of the homeobox superfamily, have crucial roles in development, regulating numerous processes including apoptosis, receptor signalling, differentiation, motility and angiogenesis. Aberrations in Hox gene expression have been reported in abnormal development and malignancy, indicating that altered expression of Hox genes could be important for both oncogenesis and tumour suppression, depending on context. Therefore, Hox gene expression could be important in diagnosis and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and ligand of a histone acetyltransferase bromodomain.

            Histone acetylation is important in chromatin remodelling and gene activation. Nearly all known histone-acetyltransferase (HAT)-associated transcriptional co-activators contain bromodomains, which are approximately 110-amino-acid modules found in many chromatin-associated proteins. Despite the wide occurrence of these bromodomains, their three-dimensional structure and binding partners remain unknown. Here we report the solution structure of the bromodomain of the HAT co-activator P/CAF (p300/CBP-associated factor). The structure reveals an unusual left-handed up-and-down four-helix bundle. In addition, we show by a combination of structural and site-directed mutagenesis studies that bromodomains can interact specifically with acetylated lysine, making them the first known protein modules to do so. The nature of the recognition of acetyl-lysine by the P/CAF bromodomain is similar to that of acetyl-CoA by histone acetyltransferase. Thus, the bromodomain is functionally linked to the HAT activity of co-activators in the regulation of gene transcription.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BET inhibitor resistance emerges from leukaemia stem cells.

              Bromodomain and extra terminal protein (BET) inhibitors are first-in-class targeted therapies that deliver a new therapeutic opportunity by directly targeting bromodomain proteins that bind acetylated chromatin marks. Early clinical trials have shown promise, especially in acute myeloid leukaemia, and therefore the evaluation of resistance mechanisms is crucial to optimize the clinical efficacy of these drugs. Here we use primary mouse haematopoietic stem and progenitor cells immortalized with the fusion protein MLL-AF9 to generate several single-cell clones that demonstrate resistance, in vitro and in vivo, to the prototypical BET inhibitor, I-BET. Resistance to I-BET confers cross-resistance to chemically distinct BET inhibitors such as JQ1, as well as resistance to genetic knockdown of BET proteins. Resistance is not mediated through increased drug efflux or metabolism, but is shown to emerge from leukaemia stem cells both ex vivo and in vivo. Chromatin-bound BRD4 is globally reduced in resistant cells, whereas the expression of key target genes such as Myc remains unaltered, highlighting the existence of alternative mechanisms to regulate transcription. We demonstrate that resistance to BET inhibitors, in human and mouse leukaemia cells, is in part a consequence of increased Wnt/β-catenin signalling, and negative regulation of this pathway results in restoration of sensitivity to I-BET in vitro and in vivo. Together, these findings provide new insights into the biology of acute myeloid leukaemia, highlight potential therapeutic limitations of BET inhibitors, and identify strategies that may enhance the clinical utility of these unique targeted therapies.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                07 November 2016
                November 2016
                : 17
                : 11
                : 1849
                Affiliations
                Division of Basic Molecular Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa 259-1193, Japan; ytanigu@ 123456is.icc.u-tokai.ac.jp ; Tel.: +81-0463-93-1121; Fax: +81-0463-96-2892
                Article
                ijms-17-01849
                10.3390/ijms17111849
                5133849
                27827996
                f02c98e5-6b65-4294-96ab-819fd35ab556
                © 2016 by the author; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 September 2016
                : 02 November 2016
                Categories
                Review

                Molecular biology
                bromodomain and extra-terminal domain (bet),bromodomain,histone acetylation,gene transcription,bet inhibitor

                Comments

                Comment on this article