4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Competition between (+)-Catechin and (−)-Epicatechin in Acetaldehyde-Induced Polymerization of Flavanols

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reactions of (+)-catechin and (-)-epicatechin in the presence of acetaldehyde were studied in model solution systems. When incubated separately with acetaldehyde and at pH values varying from 2.2 to 4. 0, reactions were faster with (-)-epicatechin than with (+)-catechin. In mixtures containing both (+)-catechin and (-)-epicatechin with acetaldehyde, new compounds besides the homogeneous bridged derivatives were detected. These compounds were concluded to be hetero-oligomers consisting of (+)-catechin and (-)-epicatechin linked with an ethyl bridge. In this case, the reaction of (-)-epicatechin was faster than that of (+)-catechin. This was also observed in solutions containing the two flavanols and the (+)-catechin-ethanol intermediate. Under these conditions, the homogeneous (+)-catechin bridged dimers and heterogeneous dimers were obtained by action of the intermediate on (+)-catechin and (-)-epicatechin, respectively. In addition, the homogeneous (-)-epicatechin ethyl-bridged dimers were also detected, showing that ethyl linkages underwent depolymerization and recombination reactions.

          Related collections

          Author and article information

          Journal
          Journal of Agricultural and Food Chemistry
          J. Agric. Food Chem.
          American Chemical Society (ACS)
          0021-8561
          1520-5118
          May 1999
          May 1999
          : 47
          : 5
          : 2088-2095
          Article
          10.1021/jf980628h
          10552501
          f06233d2-e500-4c61-8529-11f86b324097
          © 1999
          History

          Comments

          Comment on this article