24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neuroimaging of language control in bilinguals: neural adaptation and reserve

      ,
      Bilingualism: Language and Cognition
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Speaking more than one language demands a language control system that allows bilinguals to correctly use the intended language adjusting for possible interference from the non-target language. Understanding how the brain orchestrates the control of language has been a major focus of neuroimaging research on bilingualism and was central to our original neurocognitive language control model (Abutalebi & Green, 2007). We updated the network of language control (Green & Abutalebi, 2013) and here review the many new exciting findings based on functional and structural data that substantiate its core components. We discuss the language control network within the framework of the adaptive control hypothesis (Green & Abutalebi, 2013) that predicts adaptive changes specific to the control demands of the interactional contexts of language use. Adapting to such demands leads, we propose, to a neural reserve in the human brain.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The role of the medial frontal cortex in cognitive control.

          Adaptive goal-directed behavior involves monitoring of ongoing actions and performance outcomes, and subsequent adjustments of behavior and learning. We evaluate new findings in cognitive neuroscience concerning cortical interactions that subserve the recruitment and implementation of such cognitive control. A review of primate and human studies, along with a meta-analysis of the human functional neuroimaging literature, suggest that the detection of unfavorable outcomes, response errors, response conflict, and decision uncertainty elicits largely overlapping clusters of activation foci in an extensive part of the posterior medial frontal cortex (pMFC). A direct link is delineated between activity in this area and subsequent adjustments in performance. Emerging evidence points to functional interactions between the pMFC and the lateral prefrontal cortex (LPFC), so that monitoring-related pMFC activity serves as a signal that engages regulatory processes in the LPFC to implement performance adjustments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Control of mental activities by internal models in the cerebellum.

            Masao ITO (2008)
            The intricate neuronal circuitry of the cerebellum is thought to encode internal models that reproduce the dynamic properties of body parts. These models are essential for controlling the movement of these body parts: they allow the brain to precisely control the movement without the need for sensory feedback. It is thought that the cerebellum might also encode internal models that reproduce the essential properties of mental representations in the cerebral cortex. This hypothesis suggests a possible mechanism by which intuition and implicit thought might function and explains some of the symptoms that are exhibited by psychiatric patients. This article examines the conceptual bases and experimental evidence for this hypothesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aging of cerebral white matter: a review of MRI findings.

              Cerebral aging is a complex and heterogeneous process that is associated with a high degree of inter-individual variability. Structural magnetic resonance imaging (MRI) can be used to identify and quantify non-disease-related aging of the cerebral white matter. The present article reviews the findings from several MRI techniques, including morphometric approaches, study of white matter hyperintensities, diffusion tensor imaging, and magnetization transfer imaging, that have been used to examine aging of the cerebral white matter. Furthermore, the relationship of MRI indices of white matter integrity to age-related cognitive declines is reported. A general pattern of age-related preservation and decline emerges indicating that the prefrontal white matter is most susceptible to the influence of age. Studies that combine MRI with cognitive measures suggest that such age-related reductions in white matter integrity may produce a disconnection state that underlies some of the age-related performance declines in age-sensitive cognitive domains. White matter aging may contribute to a disconnection state that is associated with declines in episodic memory, executive functions, and information processing speed. (c) 2008 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                applab
                Bilingualism: Language and Cognition
                Bilingualism
                Cambridge University Press (CUP)
                1366-7289
                1469-1841
                August 2016
                April 2016
                : 19
                : 04
                : 689-698
                Article
                10.1017/S1366728916000225
                f1248967-7018-4d40-a304-fa55c3e0dbea
                © 2016
                History

                Comments

                Comment on this article