4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CF-Seq, an accessible web application for rapid re-analysis of cystic fibrosis pathogen RNA sequencing studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Researchers studying cystic fibrosis (CF) pathogens have produced numerous RNA-seq datasets which are available in the gene expression omnibus (GEO). Although these studies are publicly available, substantial computational expertise and manual effort are required to compare similar studies, visualize gene expression patterns within studies, and use published data to generate new experimental hypotheses. Furthermore, it is difficult to filter available studies by domain-relevant attributes such as strain, treatment, or media, or for a researcher to assess how a specific gene responds to various experimental conditions across studies. To reduce these barriers to data re-analysis, we have developed an R Shiny application called CF-Seq, which works with a compendium of 128 studies and 1,322 individual samples from 13 clinically relevant CF pathogens. The application allows users to filter studies by experimental factors and to view complex differential gene expression analyses at the click of a button. Here we present a series of use cases that demonstrate the application is a useful and efficient tool for new hypothesis generation. (CF-Seq: http://scangeo.dartmouth.edu/CFSeq/)

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

          In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            edgeR: a Bioconductor package for differential expression analysis of digital gene expression data

            Summary: It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              KEGG: kyoto encyclopedia of genes and genomes.

              M Kanehisa (2000)
              KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
                Bookmark

                Author and article information

                Contributors
                Bruce.A.Stanton@dartmouth.edu
                Journal
                Sci Data
                Sci Data
                Scientific Data
                Nature Publishing Group UK (London )
                2052-4463
                16 June 2022
                16 June 2022
                2022
                : 9
                : 343
                Affiliations
                [1 ]GRID grid.254880.3, ISNI 0000 0001 2179 2404, Geisel School of Medicine, , Dartmouth College, ; Hanover, NH USA
                [2 ]GRID grid.25879.31, ISNI 0000 0004 1936 8972, University of Pennsylvania, ; Philadelphia, PA USA
                Author information
                http://orcid.org/0000-0003-0543-402X
                http://orcid.org/0000-0003-0130-2695
                http://orcid.org/0000-0002-0208-3730
                Article
                1431
                10.1038/s41597-022-01431-1
                9203545
                35710652
                f153c41a-a1e1-4d6e-a219-88d82bf03020
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 9 March 2022
                : 25 May 2022
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000897, Cystic Fibrosis Foundation (CF Foundation);
                Award ID: STANTO19R0
                Award ID: STANTO19R0
                Award ID: CRAMER19GO
                Award ID: STANTO19R0
                Award ID: CRAMER19GO
                Award ID: STANTO19R0
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/100000009, Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.);
                Award ID: P30 DK117469
                Award ID: R01 HL151385
                Award ID: P30 DK117469
                Award ID: R01 HL151385
                Award ID: R01 AI146121
                Award ID: P30 DK117469
                Award ID: R01 HL151385
                Award ID: R01 AI146121
                Award ID: P30 DK117469
                Award ID: R01 HL151385
                Award Recipient :
                Funded by: The Flatley Foundation
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                data integration,gene expression analysis
                data integration, gene expression analysis

                Comments

                Comment on this article