17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pregnancy-associated serum N-glycome changes studied by high-throughput MALDI-TOF-MS

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pregnancy requires partial suppression of the immune system to ensure maternal-foetal tolerance. Protein glycosylation, and especially terminal sialic acid linkages, are of prime importance in regulating the pro- and anti-inflammatory immune responses. However, little is known about pregnancy-associated changes of the serum N-glycome and sialic acid linkages. Using a combination of recently developed methods, i.e. derivatisation that allows the distinction between α2,3- and α2,6-linked sialic acids by high-throughput MALDI-TOF-MS and software-assisted data processing, we analysed the serum N-glycome of a cohort of 29 healthy women at 6 time points during and after pregnancy. A total of 77 N-glycans were followed over time, confirming in part previous findings while also revealing novel associations ( e.g. an increase of FA2BG1S1(6), FA2G1S1(6) and A2BG2S2(6) with delivery). From the individual glycans we calculated 42 derived traits. With these, an increase during pregnancy and decrease after delivery was observed for both α2,3- and α2,6-linked sialylation. Additionally, a difference in the recovery speed after delivery was observed for α2,3- and α2,6-linked sialylation of triantennary glycans. In conclusion, our new high-throughput workflow allowed the identification of novel plasma glycosylation changes with pregnancy.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Cell surface protein glycosylation in cancer.

          Glycosylation of proteins is one of the most important PTMs, with more than half of all human proteins estimated to be glycosylated. It is widely known that aberrant glycosylation has been implicated in many different diseases due to changes associated with biological function and protein folding. In cancer, there is increasing evidence pertaining to the role of glycosylation in tumour formation and metastasis. Alterations in cell surface glycosylation, particularly terminal motifs, can promote invasive behaviour of tumour cells that ultimately lead to the progression of cancer. While a majority of studies have investigated protein glycosylation changes in cancer cell lines and tumour tissue for individual cancers, the review presented here represents a comprehensive, in-depth overview of literature on the structural changes of glycosylation and their associated synthetic enzymes in five different cancer types originating from the breast, colon, liver, skin and ovary. More importantly, this review focuses on key similarities and differences between these cancers that reflect the importance of structural changes of cell surface N- and O-glycans, such as sialylation, fucosylation, degree of branching and the expression of specific glycosyltransferases for each cancer. It is envisioned that the understanding of these biologically relevant glycan alterations on cellular proteins will facilitate the discovery of novel glycan-based biomarkers which could potentially serve as diagnostic and prognostic indicators of cancer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunoglobulin G (IgG) Fab Glycosylation Analysis Using a New Mass Spectrometric High-throughput Profiling Method Reveals Pregnancy-associated Changes*

            The N-linked glycosylation of the constant fragment (Fc) of immunoglobulin G has been shown to change during pathological and physiological events and to strongly influence antibody inflammatory properties. In contrast, little is known about Fab-linked N-glycosylation, carried by ∼20% of IgG. Here we present a high-throughput workflow to analyze Fab and Fc glycosylation of polyclonal IgG purified from 5 μl of serum. We were able to detect and quantify 37 different N-glycans by means of MALDI-TOF-MS analysis in reflectron positive mode using a novel linkage-specific derivatization of sialic acid. This method was applied to 174 samples of a pregnancy cohort to reveal Fab glycosylation features and their change with pregnancy. Data analysis revealed marked differences between Fab and Fc glycosylation, especially in the levels of galactosylation and sialylation, incidence of bisecting GlcNAc, and presence of high mannose structures, which were all higher in the Fab portion than the Fc, whereas Fc showed higher levels of fucosylation. Additionally, we observed several changes during pregnancy and after delivery. Fab N-glycan sialylation was increased and bisection was decreased relative to postpartum time points, and nearly complete galactosylation of Fab glycans was observed throughout. Fc glycosylation changes were similar to results described before, with increased galactosylation and sialylation and decreased bisection during pregnancy. We expect that the parallel analysis of IgG Fab and Fc, as set up in this paper, will be important for unraveling roles of these glycans in (auto)immunity, which may be mediated via recognition by human lectins or modulation of antigen binding.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates.

              D J Harvey (2015)
              This review describes the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to carbohydrate analysis and covers the period 1991-1998. The technique is particularly valuable for carbohydrates because it enables underivatised, as well as derivatised compounds to be examined. The various MALDI matrices that have been used for carbohydrate analysis are described, and the use of derivatization for improving mass spectral detection limits is also discussed. Methods for sample preparation and for extracting carbohydrates from biological media prior to mass spectrometric analysis are compared with emphasis on highly sensitive mass spectrometric methods. Quantitative aspects of MALDI are covered with respect to the relationship between signal strength and both mass and compound structure. The value of mass measurements by MALDI to provide a carbohydrate composition is stressed, together with the ability of the technique to provide fragmentation spectra. The use of in-source and post-source decay and collision-induced fragmentation in this context is described with emphasis on ions that provide information on the linkage and branching patterns of carbohydrates. The use of MALDI mass spectrometry, linked with exoglycosidase sequencing, is described for N-linked glycans derived from glycoproteins, and methods for the analysis of O-linked glycans are also covered. The review ends with a description of various applications of the technique to carbohydrates found as constituents of glycoproteins, bacterial glycolipids, sphingolipids, and glycolipid anchors.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                14 April 2016
                2016
                : 6
                : 23296
                Affiliations
                [1 ]Center for Proteomics and Metabolomics, Leiden University Medical Center , 2300 RC Leiden, The Netherlands
                [2 ]Department of Rheumatology, Erasmus University Medical Center , 3000 CA Rotterdam, The Netherlands
                [3 ]Department of Rheumatology, Leiden University Medical Center , 2300 RC Leiden, The Netherlands
                [4 ]Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle , F 59 000 Lille, France
                Author notes
                Article
                srep23296
                10.1038/srep23296
                4831011
                27075729
                f1f3cf1b-2b16-4015-aac6-175fb0c770fb
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 16 December 2015
                : 15 February 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article