16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gemini Spectroscopic Survey of Young Star Clusters in Merging/Interacting Galaxies. III. The Antennae

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present optical spectroscopy of 16 star clusters in the merging galaxies NGC 4038/39 ("The Antennae") and supplement this dataset with HST imaging. The age and metallicity of each cluster is derived through a comparison between the observed Balmer and metal line strengths with simple stellar population models. We then estimate extinctions and masses using the photometry. We find that all but three clusters have ages between ~3-200 Myr, consistent with the expected increase in the star-formation rate due to the merger. Most of the clusters have velocities in agreement with nearby molecular and HI gas that has been previously shown to be rotating within the progenitor galaxies, hence star/cluster formation is still taking place within the galactic disks. However, three clusters have radial velocities that are inconsistent with being part of the rotating gas disks, which is surprising given their young (200-500Myr) ages. Interestingly, we find a stellar association with the same colors (V-I) near one of these three clusters, suggesting that the cluster and association were formed concurrently and have remained spatially correlated. We find evidence for spatially distributed cluster formation throughout the duration of the merger. The impact of various assumptions about the star/cluster formation rate on the interpretation of the cluster age distribution are explored, and we do not find evidence for long term "infant mortality" as has been previously suggested. Models of galaxy mergers that include a prescription for star formation can provide an overall good fit to the observed cluster age distribution.

          Related collections

          Author and article information

          Journal
          11 June 2009
          Article
          10.1088/0004-637X/701/1/607
          0906.2210
          f23cc370-1448-4b4f-a6ca-0bf0c2f6e950

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Astrophys.J.701:607-619,2009
          15 pages, 11 figures, ApJ in press
          astro-ph.CO

          Comments

          Comment on this article