36
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dopamine: a parallel pathway for the modulation of spinal locomotor networks

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The spinal cord contains networks of neurons that can produce locomotor patterns. To readily respond to environmental conditions, these networks must be flexible yet at the same time robust. Neuromodulators play a key role in contributing to network flexibility in a variety of invertebrate and vertebrate networks. For example, neuromodulators contribute to altering intrinsic properties and synaptic weights that, in extreme cases, can lead to neurons switching between networks. Here we focus on the role of dopamine in the control of stepping networks in the spinal cord. We first review the role of dopamine in modulating rhythmic activity in the stomatogastric ganglion (STG) and the leech, since work from these preparations provides a foundation to understand its role in vertebrate systems. We then move to a discussion of dopamine’s role in modulation of swimming in aquatic species such as the larval xenopus, lamprey and zebrafish. The control of terrestrial walking in vertebrates by dopamine is less studied and we review current evidence in mammals with a focus on rodent species. We discuss data suggesting that the source of dopamine within the spinal cord is mainly from the A11 area of the diencephalon, and then turn to a discussion of dopamine’s role in modulating walking patterns from both in vivo and in vitro preparations. Similar to the descending serotonergic system, the dopaminergic system may serve as a potential target to promote recovery of locomotor function following spinal cord injury (SCI); evidence suggests that dopaminergic agonists can promote recovery of function following SCI. We discuss pharmacogenetic and optogenetic approaches that could be deployed in SCI and their potential tractability. Throughout the review we draw parallels with both noradrenergic and serotonergic modulatory effects on spinal cord networks. In all likelihood, a complementary monoaminergic enhancement strategy should be deployed following SCI.

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: not found

          Similar network activity from disparate circuit parameters.

          It is often assumed that cellular and synaptic properties need to be regulated to specific values to allow a neuronal network to function properly. To determine how tightly neuronal properties and synaptic strengths need to be tuned to produce a given network output, we simulated more than 20 million versions of a three-cell model of the pyloric network of the crustacean stomatogastric ganglion using different combinations of synapse strengths and neuron properties. We found that virtually indistinguishable network activity can arise from widely disparate sets of underlying mechanisms, suggesting that there could be considerable animal-to-animal variability in many of the parameters that control network activity, and that many different combinations of synaptic strengths and intrinsic membrane properties can be consistent with appropriate network performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dopamine receptors: from structure to function.

            The diverse physiological actions of dopamine are mediated by at least five distinct G protein-coupled receptor subtypes. Two D1-like receptor subtypes (D1 and D5) couple to the G protein Gs and activate adenylyl cyclase. The other receptor subtypes belong to the D2-like subfamily (D2, D3, and D4) and are prototypic of G protein-coupled receptors that inhibit adenylyl cyclase and activate K+ channels. The genes for the D1 and D5 receptors are intronless, but pseudogenes of the D5 exist. The D2 and D3 receptors vary in certain tissues and species as a result of alternative splicing, and the human D4 receptor gene exhibits extensive polymorphic variation. In the central nervous system, dopamine receptors are widely expressed because they are involved in the control of locomotion, cognition, emotion, and affect as well as neuroendocrine secretion. In the periphery, dopamine receptors are present more prominently in kidney, vasculature, and pituitary, where they affect mainly sodium homeostasis, vascular tone, and hormone secretion. Numerous genetic linkage analysis studies have failed so far to reveal unequivocal evidence for the involvement of one of these receptors in the etiology of various central nervous system disorders. However, targeted deletion of several of these dopamine receptor genes in mice should provide valuable information about their physiological functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circuits controlling vertebrate locomotion: moving in a new direction.

              Neurobiologists have long sought to understand how circuits in the nervous system are organized to generate the precise neural outputs that underlie particular behaviours. The motor circuits in the spinal cord that control locomotion, commonly referred to as central pattern generator networks, provide an experimentally tractable model system for investigating how moderately complex ensembles of neurons generate select motor behaviours. The advent of novel molecular and genetic techniques coupled with recent advances in our knowledge of spinal cord development means that a comprehensive understanding of how the motor circuitry is organized and operates may be within our grasp.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neural Circuits
                Front Neural Circuits
                Front. Neural Circuits
                Frontiers in Neural Circuits
                Frontiers Media S.A.
                1662-5110
                16 June 2014
                2014
                : 8
                : 55
                Affiliations
                [1] 1Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
                [2] 2Department of Comparative Biology and Experimental Medicine, University of Calgary Calgary, AB, Canada
                [3] 3Department of Physiology and Pharmacology, University of Calgary Calgary, AB, Canada
                [4] 4Department of Clinical Neurosciences, University of Calgary Calgary, AB, Canada
                Author notes

                Edited by: Brian R. Noga, University of Miami, USA

                Reviewed by: Ronald M. Harris-Warrick, Cornell University, USA; Pierre Guertin, Laval University, Canada

                *Correspondence: Patrick J. Whelan, Hotchkiss Brain Institute, University of Calgary, HSC 2119, 3330 Hospital Drive NW, Calgary, AB T2N 1N4, Canada e-mail: whelan@ 123456ucalgary.ca

                This article was submitted to the journal Frontiers in Neural Circuits.

                Article
                10.3389/fncir.2014.00055
                4059167
                24982614
                f3046333-4286-4230-8e38-4beb78a53c3e
                Copyright © 2014 Sharples, Koblinger, Humphreys and Whelan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 March 2014
                : 11 May 2014
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 166, Pages: 16, Words: 13658
                Categories
                Neuroscience
                Review Article

                Neurosciences
                dopamine,monoamines,central pattern generator,locomotion,spinal cord
                Neurosciences
                dopamine, monoamines, central pattern generator, locomotion, spinal cord

                Comments

                Comment on this article