2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicting drug outcome of population via clinical knowledge graph

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Optimal treatments depend on numerous factors such as drug chemical properties, disease biology, and patient characteristics to which the treatment is applied. To realize the promise of AI in healthcare, there is a need for designing systems that can capture patient heterogeneity and relevant biomedical knowledge. Here we present PlaNet, a geometric deep learning framework that reasons over population variability, disease biology, and drug chemistry by representing knowledge in the form of a massive clinical knowledge graph that can be enhanced by language models. Our framework is applicable to any sub-population, any drug as well drug combinations, any disease, and to a wide range of pharmacological tasks. We apply the PlaNet framework to reason about outcomes of clinical trials: PlaNet predicts drug efficacy and adverse events, even for experimental drugs and their combinations that have never been seen by the model. Furthermore, PlaNet can estimate the effect of changing population on the trial outcome with direct implications on patient stratification in clinical trials. PlaNet takes fundamental steps towards AI-guided clinical trials design, offering valuable guidance for realizing the vision of precision medicine using AI.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            DrugBank 5.0: a major update to the DrugBank database for 2018

            Abstract DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year’s update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Attention Is All You Need

              The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. 15 pages, 5 figures
                Bookmark

                Author and article information

                Journal
                medRxiv
                MEDRXIV
                medRxiv
                Cold Spring Harbor Laboratory
                08 March 2024
                : 2024.03.06.24303800
                Affiliations
                [1 ]School of Computer and Communication Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
                [2 ]Department of Computer Science, Stanford University, Stanford, CA 94305, USA
                Author notes
                [*]

                These authors contributed equally.

                Author Contributions

                M.B. and J.L. conceived the study. M.B., M.Y., P.A. and J.L. performed research, contributed new analytical tools, designed algorithmic framework, analyzed data and wrote the manuscript.

                []Corresponding author. jure@ 123456cs.stanford.edu
                Author information
                http://orcid.org/0000-0002-1120-1778
                http://orcid.org/0000-0002-5411-923X
                Article
                10.1101/2024.03.06.24303800
                10942490
                38496488
                f34a0151-eda6-400c-a385-4432c8ac0e0b

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.

                History
                Categories
                Article

                Comments

                Comment on this article