25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ion channel stochasticity may be critical in determining the reliability and precision of spike timing.

      Neural computation
      Action Potentials, physiology, Computer Simulation, Evaluation Studies as Topic, Ion Channels, Models, Neurological, Oscillometry, Reaction Time, Stochastic Processes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The firing reliability and precision of an isopotential membrane patch consisting of a realistically large number of ion channels is investigated using a stochastic Hodgkin-Huxley (HH) model. In sharp contrast to the deterministic HH model, the biophysically inspired stochastic model reproduces qualitatively the different reliability and precision characteristics of spike firing in response to DC and fluctuating current input in neocortical neurons, as reported by Mainen & Sejnowski (1995). For DC inputs, spike timing is highly unreliable; the reliability and precision are significantly increased for fluctuating current input. This behavior is critically determined by the relatively small number of excitable channels that are opened near threshold for spike firing rather than by the total number of channels that exist in the membrane patch. Channel fluctuations, together with the inherent bistability in the HH equations, give rise to three additional experimentally observed phenomena: subthreshold oscillations in the membrane voltage for DC input, "spontaneous" spikes for subthreshold inputs, and "missing" spikes for suprathreshold inputs. We suggest that the noise inherent in the operation of ion channels enables neurons to act as "smart" encoders. Slowly varying, uncorrelated inputs are coded with low reliability and accuracy and, hence, the information about such inputs is encoded almost exclusively by the spike rate. On the other hand, correlated presynaptic activity produces sharp fluctuations in the input to the postsynaptic cell, which are then encoded with high reliability and accuracy. In this case, information about the input exists in the exact timing of the spikes. We conclude that channel stochasticity should be considered in realistic models of neurons.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Reliability of spike timing in neocortical neurons

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pattern recognition computation using action potential timing for stimulus representation.

            J Hopfield (1995)
            A computational model is described in which the sizes of variables are represented by the explicit times at which action potentials occur, rather than by the more usual 'firing rate' of neurons. The comparison of patterns over sets of analogue variables is done by a network using different delays for different information paths. This mode of computation explains how one scheme of neuroarchitecture can be used for very different sensory modalities and seemingly different computations. The oscillations and anatomy of the mammalian olfactory systems have a simple interpretation in terms of this representation, and relate to processing in the auditory system. Single-electrode recording would not detect such neural computing. Recognition 'units' in this style respond more like radial basis function units than elementary sigmoid units.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reproducibility and variability in neural spike trains.

              To provide information about dynamic sensory stimuli, the pattern of action potentials in spiking neurons must be variable. To ensure reliability these variations must be related, reproducibly, to the stimulus. For H1, a motion-sensitive neuron in the fly's visual system, constant-velocity motion produces irregular spike firing patterns, and spike counts typically have a variance comparable to the mean, for cells in the mammalian cortex. But more natural, time-dependent input signals yield patterns of spikes that are much more reproducible, both in terms of timing and of counting precision. Variability and reproducibility are quantified with ideas from information theory, and measured spike sequences in H1 carry more than twice the amount of information they would if they followed the variance-mean relation seen with constant inputs. Thus, models that may accurately account for the neural response to static stimuli can significantly underestimate the reliability of signal transfer under more natural conditions.
                Bookmark

                Author and article information

                Comments

                Comment on this article