8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activity-based training with the Myosuit: a safety and feasibility study across diverse gait disorders

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Physical activity is a recommended part of treatment for numerous neurological and neuromuscular disorders. Yet, many individuals with limited mobility are not able to meet the recommended activity levels. Lightweight, wearable robots like the Myosuit promise to facilitate functional ambulation and thereby physical activity. However, there is limited evidence of the safety and feasibility of training with such devices.

          Methods

          Twelve participants with diverse motor disorders and the ability to walk for at least 10 m were enrolled in this uncontrolled case series study. The study protocol included five training sessions with a net training time of 45 min each. Primary outcomes were the feasibility of engaging in training with the Myosuit, the occurrence of adverse events, and participant retention. As secondary outcomes, we analyzed the walking speed using the 10-m Walk Test (10MWT) and for three participants, walking endurance using the 2-min Walk Tests.

          Results

          Eight out of 12 participants completed the entire study protocol. Three participants withdrew from the study or were excluded for reasons unrelated to the study. One participant withdrew because of an unsafe feeling when walking with the Myosuit. No adverse events occurred during the study period for any of the participants and all scheduled trainings were completed. For five out of the eight participants that completed the full study, the walking speed when using the Myosuit was higher than to their baseline walking speed.

          Conclusions

          Activity-based training with the Myosuit appears to be safe, feasible, and well-tolerated by individuals with diverse motor disorders.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Pulmonary rehabilitation for chronic obstructive pulmonary disease.

          Widespread application of pulmonary rehabilitation (also known as respiratory rehabilitation) in chronic obstructive pulmonary disease (COPD) should be preceded by demonstrable improvements in function (health-related quality of life, functional and maximal exercise capacity) attributable to the programmes. This review updates the review reported in 2006.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            How many steps/day are enough? For older adults and special populations

            Older adults and special populations (living with disability and/or chronic illness that may limit mobility and/or physical endurance) can benefit from practicing a more physically active lifestyle, typically by increasing ambulatory activity. Step counting devices (accelerometers and pedometers) offer an opportunity to monitor daily ambulatory activity; however, an appropriate translation of public health guidelines in terms of steps/day is unknown. Therefore this review was conducted to translate public health recommendations in terms of steps/day. Normative data indicates that 1) healthy older adults average 2,000-9,000 steps/day, and 2) special populations average 1,200-8,800 steps/day. Pedometer-based interventions in older adults and special populations elicit a weighted increase of approximately 775 steps/day (or an effect size of 0.26) and 2,215 steps/day (or an effect size of 0.67), respectively. There is no evidence to inform a moderate intensity cadence (i.e., steps/minute) in older adults at this time. However, using the adult cadence of 100 steps/minute to demark the lower end of an absolutely-defined moderate intensity (i.e., 3 METs), and multiplying this by 30 minutes produces a reasonable heuristic (i.e., guiding) value of 3,000 steps. However, this cadence may be unattainable in some frail/diseased populations. Regardless, to truly translate public health guidelines, these steps should be taken over and above activities performed in the course of daily living, be of at least moderate intensity accumulated in minimally 10 minute bouts, and add up to at least 150 minutes over the week. Considering a daily background of 5,000 steps/day (which may actually be too high for some older adults and/or special populations), a computed translation approximates 8,000 steps on days that include a target of achieving 30 minutes of moderate-to-vigorous physical activity (MVPA), and approximately 7,100 steps/day if averaged over a week. Measured directly and including these background activities, the evidence suggests that 30 minutes of daily MVPA accumulated in addition to habitual daily activities in healthy older adults is equivalent to taking approximately 7,000-10,000 steps/day. Those living with disability and/or chronic illness (that limits mobility and or/physical endurance) display lower levels of background daily activity, and this will affect whole-day estimates of recommended physical activity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A soft robotic exosuit improves walking in patients after stroke

                Bookmark

                Author and article information

                Contributors
                florian.haufe@hest.ethz.ch
                Journal
                J Neuroeng Rehabil
                J Neuroeng Rehabil
                Journal of NeuroEngineering and Rehabilitation
                BioMed Central (London )
                1743-0003
                8 October 2020
                8 October 2020
                2020
                : 17
                : 135
                Affiliations
                [1 ]GRID grid.5801.c, ISNI 0000 0001 2156 2780, Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), , ETH Zurich, ; Zurich, Switzerland
                [2 ]MyoSwiss AG, Zurich, Switzerland
                [3 ]GRID grid.7400.3, ISNI 0000 0004 1937 0650, Spinal Cord Injury Center, , Balgrist University Hospital, Medical Faculty, University of Zurich, ; Zurich, Switzerland
                Author information
                http://orcid.org/0000-0001-8323-8513
                Article
                765
                10.1186/s12984-020-00765-4
                7545901
                33032627
                f45a0c20-c3ab-4ce0-9f0c-132115f8cff5
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 4 May 2020
                : 24 September 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001711, Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung;
                Funded by: Swiss Center for Clinical Movement Analysis (SCMA)
                Funded by: MyoSwiss AG
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Neurosciences
                training,rehabilitation,robot-assisted,exoskeleton,stroke,spinal cord injury,muscle dystrophy,exosuit,exomuscle

                Comments

                Comment on this article