43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Production of pharmaceutical proteins by transgenic animals

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Proteins started being used as pharmaceuticals in the 1920s with insulin extracted from pig pancreas. In the early 1980s, human insulin was prepared in recombinant bacteria and it is now used by all patients suffering from diabetes. Several other proteins and particularly human growth hormone are also prepared from bacteria. This success was limited by the fact that bacteria cannot synthesize complex proteins such as monoclonal antibodies or coagulation blood factors which must be matured by post-translational modifications to be active or stable in vivo. These modifications include mainly folding, cleavage, subunit association, γ-carboxylation and glycosylation. They can be fully achieved only in mammalian cells which can be cultured in fermentors at an industrial scale or used in living animals. Several transgenic animal species can produce recombinant proteins but presently two systems started being implemented. The first is milk from farm transgenic mammals which has been studied for 20 years and which allowed a protein, human antithrombin III, to receive the agreement from EMEA (European Agency for the Evaluation of Medicinal Products) to be put on the market in 2006. The second system is chicken egg white which recently became more attractive after essential improvement of the methods used to generate transgenic birds. Two monoclonal antibodies and human interferon-β1a could be recovered from chicken egg white. A broad variety of recombinant proteins were produced experimentally by these systems and a few others. This includes monoclonal antibodies, vaccines, blood factors, hormones, growth factors, cytokines, enzymes, milk proteins, collagen, fibrinogen and others. Although these tools have not yet been optimized and are still being improved, a new era in the production of recombinant pharmaceutical proteins was initiated in 1987 and became a reality in 2006. In the present review, the efficiency of the different animal systems to produce pharmaceutical proteins are described and compared to others including plants and micro-organisms.

          Résumé

          Les protéines d’intérêt pharmaceutique ont commencé à être utilisées au cours des années 1920 avec l’insuline extraite des pancréas de porcs. Au début des années 1980, l’insuline humaine a commencé à être préparée à partir de bactéries recombinantes et désormais, tous les diabétiques utilisent cette hormone. Plusieurs autres protéines et notamment l’hormone de croissance humaine, ont été préparées à partir de bactéries recombinantes. Ces premiers succès ont rapidement montré la limite des bactéries qui sont incapables de synthétiser des protéines ayant une structure complexe comme les anticorps ou les facteurs de coagulation sanguine. En effet, pour être stables et actives in vivo, ces protéines doivent subir de multiples modifications post-traductionnelles. Les principales modifications sont le repliement, le clivage, l’association des sous-unités, la γ-carboxylation et la glycosylation. Elles ne se produisent complètement que dans des cellules de mammifères cultivées dans des fermenteurs à l’échelle industrielle ou appartenant à des animaux transgéniques. Plusieurs espèces d’animaux transgéniques peuvent produire des protéines recombinantes mais actuellement deux systèmes ont commencé à être exploités. Le premier est le lait des animaux de ferme transgéniques qui sont étudiés depuis 20 ans. Ce système a permis à une protéine, l’antithrombine III humaine, de recevoir l’autorisation de mise sur le marché par l’EMEA (European Agency for the Evaluation of Medicinal Products) en 2006. Le second système est le blanc d’œuf de poulets transgéniques qui est devenu récemment plus attractif après que les méthodes de préparation d’oiseaux transgéniques aient été améliorées. Deux anticorps monoclonaux et de l’interféron-β1a humain ont été obtenus dans le blanc d’œuf de poulets. Une grande variété de protéines recombinantes a été préparée à titre expérimental avec ces deux systèmes et quelques autres. Ces protéines comprennent des anticorps monoclonaux, des vaccins, des facteurs sanguins, des hormones, des facteurs de croissance, des cytokines, des enzymes, des protéines du lait, du collagène, du fribrinogène et d’autres encore. Bien que ces outils n’aient pas été optimisés et soient encore en cours d’amélioration, une nouvelle ère dans la production de protéines recombinantes pharmaceutiques a commencé en 1987 et est devenue une réalité en 2006. Dans cette revue, l’efficacité des différents systèmes animaux capables de produire des protéines pharmaceutiques sont décrits et comparés aux autres incluant les plantes et les microorganismes.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Germline transmission of genetically modified primordial germ cells.

          Primordial germ cells (PGCs) are the precursors of sperm and eggs. In most animals, segregation of the germ line from the somatic lineages is one of the earliest events in development; in avian embryos, PGCs are first identified in an extra-embryonic region, the germinal crescent, after approximately 18 h of incubation. After 50-55 h of development, PGCs migrate to the gonad and subsequently produce functional sperm and oocytes. So far, cultures of PGCs that remain restricted to the germ line have not been reported in any species. Here we show that chicken PGCs can be isolated, cultured and genetically modified while maintaining their commitment to the germ line. Furthermore, we show that chicken PGCs can be induced in vitro to differentiate into embryonic germ cells that contribute to somatic tissues. Retention of the commitment of PGCs to the germ line after extended periods in culture and after genetic modification combined with their capacity to acquire somatic competence in vitro provides a new model for developmental biology. The utility of the model is enhanced by the accessibility of the avian embryo, which facilitates access to the earliest stages of development and supplies a facile route for the reintroduction of PGCs into the embryonic vasculature. In addition, these attributes create new opportunities to manipulate the genome of chickens for agricultural and pharmaceutical applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Production of cattle lacking prion protein.

            Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrP(C), such as PrP(BSE) in bovine spongiform encephalopathy (BSE) in cattle and PrP(CJD) in Creutzfeldt-Jakob disease (CJD) in humans. Disruption of PrP(C) expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities. However, the impact of ablating PrP(C) function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrP(C)-deficient cattle produced by a sequential gene-targeting system. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification. PrP(C)-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant cell cultures for the production of recombinant proteins.

              The use of whole plants for the synthesis of recombinant proteins has received a great deal of attention recently because of advantages in economy, scalability and safety compared with traditional microbial and mammalian production systems. However, production systems that use whole plants lack several of the intrinsic benefits of cultured cells, including the precise control over growth conditions, batch-to-batch product consistency, a high level of containment and the ability to produce recombinant proteins in compliance with good manufacturing practice. Plant cell cultures combine the merits of whole-plant systems with those of microbial and animal cell cultures, and already have an established track record for the production of valuable therapeutic secondary metabolites. Although no recombinant proteins have yet been produced commercially using plant cell cultures, there have been many proof-of-principle studies and several companies are investigating the commercial feasibility of such production systems.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comp Immunol Microbiol Infect Dis
                Comp. Immunol. Microbiol. Infect. Dis
                Comparative Immunology, Microbiology and Infectious Diseases
                Elsevier Ltd.
                0147-9571
                1878-1667
                19 February 2008
                March 2009
                19 February 2008
                : 32
                : 2
                : 107-121
                Affiliations
                Biologie du Développement et Reproduction, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
                Author notes
                [* ]Tel.: +33 1 34 65 25 40; fax: +33 1 34 65 22 41. louis.houdebine@ 123456jouy.inra.fr
                Article
                S0147-9571(07)00130-0
                10.1016/j.cimid.2007.11.005
                7112688
                18243312
                f58466d8-0191-4465-b806-66f4c28cc82f
                Copyright © 2008 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Microbiology & Virology
                proteins,recombinant,pharmaceutical,transgenic,animals,milk,egg white,monoclonal antibodies,vaccines,protéines,recombinantes,pharmaceutiques,transgéniques,animaux,lait,blanc d’oeuf,anticorps monoclonaux,vaccins

                Comments

                Comment on this article