24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resistance Training Using Different Hypoxic Training Strategies: a Basis for Hypertrophy and Muscle Power Development

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The possible muscular strength, hypertrophy, and muscle power benefits of resistance training under environmental conditions of hypoxia are currently being investigated.

          Nowadays, resistance training in hypoxia constitutes a promising new training strategy for strength and muscle gains. The main mechanisms responsible for these effects seem to be related to increased metabolite accumulation due to hypoxia. However, no data are reported in the literature to describe and compare the efficacy of the different hypertrophic resistance training strategies in hypoxia.

          Moreover, improvements in sprinting, jumping, or throwing performance have also been described at terrestrial altitude, encouraging research into the speed of explosive movements at altitude. It has been suggested that the reduction in the aerodynamic resistance and/or the increase in the anaerobic metabolism at higher altitudes can influence the metabolic cost, increase the take-off velocities, or improve the motor unit recruitment patterns, which may explain these improvements. Despite these findings, the applicability of altitude conditions in improving muscle power by resistance training remains to be clarified.

          This review examines current knowledge regarding resistance training in different types of hypoxia, focusing on strategies designed to improve muscle hypertrophy as well as power for explosive movements.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Fundamentals of resistance training: progression and exercise prescription.

          Progression in resistance training is a dynamic process that requires an exercise prescription process, evaluation of training progress, and careful development of target goals. The process starts with the determination of individual needs and training goals. This involves decisions regarding questions as to what muscles must be trained, injury prevention sites, metabolic demands of target training goals, etc. The single workout must then be designed reflecting these targeted program goals including the choice of exercises, order of exercise, amount of rest used between sets and exercises, number of repetitions and sets used for each exercise, and the intensity of each exercise. For progression, these variables must then be varied over time and the exercise prescription altered to maintain or advance specific training goals and to avoid overtraining. A careful system of goal targeting, exercise testing, proper exercise technique, supervision, and optimal exercise prescription all contribute to the successful implementation of a resistance training program.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Developing maximal neuromuscular power: part 2 - training considerations for improving maximal power production.

            This series of reviews focuses on the most important neuromuscular function in many sport performances: the ability to generate maximal muscular power. Part 1, published in an earlier issue of Sports Medicine, focused on the factors that affect maximal power production while part 2 explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability to generate maximal power during complex motor skills is of paramount importance to successful athletic performance across many sports. A crucial issue faced by scientists and coaches is the development of effective and efficient training programmes that improve maximal power production in dynamic, multi-joint movements. Such training is referred to as 'power training' for the purposes of this review. Although further research is required in order to gain a deeper understanding of the optimal training techniques for maximizing power in complex, sports-specific movements and the precise mechanisms underlying adaptation, several key conclusions can be drawn from this review. First, a fundamental relationship exists between strength and power, which dictates that an individual cannot possess a high level of power without first being relatively strong. Thus, enhancing and maintaining maximal strength is essential when considering the long-term development of power. Second, consideration of movement pattern, load and velocity specificity is essential when designing power training programmes. Ballistic, plyometric and weightlifting exercises can be used effectively as primary exercises within a power training programme that enhances maximal power. The loads applied to these exercises will depend on the specific requirements of each particular sport and the type of movement being trained. The use of ballistic exercises with loads ranging from 0% to 50% of one-repetition maximum (1RM) and/or weightlifting exercises performed with loads ranging from 50% to 90% of 1RM appears to be the most potent loading stimulus for improving maximal power in complex movements. Furthermore, plyometric exercises should involve stretch rates as well as stretch loads that are similar to those encountered in each specific sport and involve little to no external resistance. These loading conditions allow for superior transfer to performance because they require similar movement velocities to those typically encountered in sport. Third, it is vital to consider the individual athlete's window of adaptation (i.e. the magnitude of potential for improvement) for each neuromuscular factor contributing to maximal power production when developing an effective and efficient power training programme. A training programme that focuses on the least developed factor contributing to maximal power will prompt the greatest neuromuscular adaptations and therefore result in superior performance improvements for that individual. Finally, a key consideration for the long-term development of an athlete's maximal power production capacity is the need for an integration of numerous power training techniques. This integration allows for variation within power meso-/micro-cycles while still maintaining specificity, which is theorized to lead to the greatest long-term improvement in maximal power.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neural factors versus hypertrophy in the time course of muscle strength gain.

              The time course of strength gain with respect to the contributions of neural factors and hypertrophy was studied in seven young males and eight females during the course of an 8 week regimen of isotonic strength training. The results indicated that neural factors accounted for the larger proportion of the initial strength increment and thereafter both neural factors and hypertrophy took part in the further increase in strength, with hypertrophy becoming the dominant factor after the first 3 to 5 weeks. Our data regarding the untrained contralateral arm flexors provide further support for the concept of cross education. It was suggested that the nature of this cross education effect may entirely rest on the neural factors presumably acting at various levels of the nervous system which could result in increasing the maximal level of muscle activation.
                Bookmark

                Author and article information

                Contributors
                034958244381 , mbelen@ugr.es
                034958244381 , amagr@ugr.es
                034958244381 , ajmorales@ugr.es
                034958244389 , ppadial@ugr.es
                Journal
                Sports Med Open
                Sports Med Open
                Sports Medicine - Open
                Springer International Publishing (Cham )
                2199-1170
                2198-9761
                17 March 2017
                17 March 2017
                December 2017
                : 3
                : 12
                Affiliations
                ISNI 0000000121678994, GRID grid.4489.1, Department of Physical Education and Sport, Faculty of Sport Sciences, , University of Granada, ; Crta Alfacar sn, 18011 Granada, Spain
                Author information
                http://orcid.org/0000-0002-3933-6041
                Article
                78
                10.1186/s40798-017-0078-z
                5357242
                28315193
                f6088692-5e76-4aa0-b04c-609cc4c17e3d
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 20 September 2016
                : 23 February 2017
                Funding
                Funded by: Spanish Ministry of Science and Innovation
                Award ID: DEP2012-35774- MINECO
                Award ID: DEP2015-64350-P (MINECO/FEDER)
                Award Recipient :
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2017

                Comments

                Comment on this article