36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Jasmonate perception regulates jasmonate biosynthesis and JA-Ile metabolism: the case of COI1 in Nicotiana attenuata.

      Plant and Cell Physiology
      Cyclopentanes, metabolism, pharmacology, Gene Expression Regulation, Plant, Gene Silencing, Isoleucine, Lycopersicon esculentum, genetics, Molecular Sequence Data, Oxylipins, Plant Proteins, Time Factors, Tobacco

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CORONATINE INSENSITIVE 1 (COI1) is a well-known key player in processes downstream of jasmonic acid (JA) biosynthesis: silencing COI1 in Nicotiana attenuata (ir-coi1) makes plants insensitive to JA, prevents the up-regulation of JA-mediated defenses and decreases the plant's resistance to herbivores and pathogens. In agreement with previous studies, we observed that regulation of several JA biosynthesis genes elicited by Manduca sexta oral secretions (OS) is COI1 dependent. In response to wounding and application of OS ir-coi1 plants accumulate 75% less JA compared with wild-type plants (WT), resembling JA levels found in plants silenced in the key enzyme in JA biosynthesis LIPOXYGENASE 3 (as-lox). However, while OS-elicited as-lox plants also accumulated lower levels of the JA-conjugate JA-isoleucine (JA-Ile) than did WT plants, JA-Ile accumulation in ir-coi1 was higher, prolonged and peaked with a delay of 30 min. In vivo substrate feeding experiments of N. attenuata demonstrate that the increased and prolonged JA-Ile accumulation pattern in ir-coi1 is not the result of altered substrate availability, i.e. of JA and/or Ile, but is due to an approximately 6-fold decrease in JA-Ile turnover. These results provide the first evidence for a second, novel regulatory feedback function of COI1 in enhancing JA-Ile turnover. Hence, in addition to its control over JA biosynthesis, COI1 might fine-tune the dynamics of the jasmonate response after induction by herbivore elicitors.

          Related collections

          Author and article information

          Comments

          Comment on this article