51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Gateway for Phylogenetic Analysis Powered by Grid Computing Featuring GARLI 2.0

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We introduce molecularevolution.org, a publicly available gateway for high-throughput, maximum-likelihood phylogenetic analysis powered by grid computing. The gateway features a garli 2.0 web service that enables a user to quickly and easily submit thousands of maximum likelihood tree searches or bootstrap searches that are executed in parallel on distributed computing resources. The garli web service allows one to easily specify partitioned substitution models using a graphical interface, and it performs sophisticated post-processing of phylogenetic results. Although the garli web service has been used by the research community for over three years, here we formally announce the availability of the service, describe its capabilities, highlight new features and recent improvements, and provide details about how the grid system efficiently delivers high-quality phylogenetic results. [ garli, gateway, grid computing, maximum likelihood, molecular evolution portal, phylogenetics, web service.]

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          How many bootstrap replicates are necessary?

          Phylogenetic bootstrapping (BS) is a standard technique for inferring confidence values on phylogenetic trees that is based on reconstructing many trees from minor variations of the input data, trees called replicates. BS is used with all phylogenetic reconstruction approaches, but we focus here on one of the most popular, maximum likelihood (ML). Because ML inference is so computationally demanding, it has proved too expensive to date to assess the impact of the number of replicates used in BS on the relative accuracy of the support values. For the same reason, a rather small number (typically 100) of BS replicates are computed in real-world studies. Stamatakis et al. recently introduced a BS algorithm that is 1 to 2 orders of magnitude faster than previous techniques, while yielding qualitatively comparable support values, making an experimental study possible. In this article, we propose stopping criteria--that is, thresholds computed at runtime to determine when enough replicates have been generated--and we report on the first large-scale experimental study to assess the effect of the number of replicates on the quality of support values, including the performance of our proposed criteria. We run our tests on 17 diverse real-world DNA--single-gene as well as multi-gene--datasets, which include 125-2,554 taxa. We find that our stopping criteria typically stop computations after 100-500 replicates (although the most conservative criterion may continue for several thousand replicates) while producing support values that correlate at better than 99.5% with the reference values on the best ML trees. Significantly, we also find that the stopping criteria can recommend very different numbers of replicates for different datasets of comparable sizes. Our results are thus twofold: (i) they give the first experimental assessment of the effect of the number of BS replicates on the quality of support values returned through BS, and (ii) they validate our proposals for stopping criteria. Practitioners will no longer have to enter a guess nor worry about the quality of support values; moreover, with most counts of replicates in the 100-500 range, robust BS under ML inference becomes computationally practical for most datasets. The complete test suite is available at http://lcbb.epfl.ch/BS.tar.bz2, and BS with our stopping criteria is included in the latest release of RAxML v7.2.5, available at http://wwwkramer.in.tum.de/exelixis/software.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Large-Scale, Higher-Level, Molecular Phylogenetic Study of the Insect Order Lepidoptera (Moths and Butterflies)

            Background Higher-level relationships within the Lepidoptera, and particularly within the species-rich subclade Ditrysia, are generally not well understood, although recent studies have yielded progress. We present the most comprehensive molecular analysis of lepidopteran phylogeny to date, focusing on relationships among superfamilies. Methodology / Principal Findings 483 taxa spanning 115 of 124 families were sampled for 19 protein-coding nuclear genes, from which maximum likelihood tree estimates and bootstrap percentages were obtained using GARLI. Assessment of heuristic search effectiveness showed that better trees and higher bootstrap percentages probably remain to be discovered even after 1000 or more search replicates, but further search proved impractical even with grid computing. Other analyses explored the effects of sampling nonsynonymous change only versus partitioned and unpartitioned total nucleotide change; deletion of rogue taxa; and compositional heterogeneity. Relationships among the non-ditrysian lineages previously inferred from morphology were largely confirmed, plus some new ones, with strong support. Robust support was also found for divergences among non-apoditrysian lineages of Ditrysia, but only rarely so within Apoditrysia. Paraphyly for Tineoidea is strongly supported by analysis of nonsynonymous-only signal; conflicting, strong support for tineoid monophyly when synonymous signal was added back is shown to result from compositional heterogeneity. Conclusions / Significance Support for among-superfamily relationships outside the Apoditrysia is now generally strong. Comparable support is mostly lacking within Apoditrysia, but dramatically increased bootstrap percentages for some nodes after rogue taxon removal, and concordance with other evidence, strongly suggest that our picture of apoditrysian phylogeny is approximately correct. This study highlights the challenge of finding optimal topologies when analyzing hundreds of taxa. It also shows that some nodes get strong support only when analysis is restricted to nonsynonymous change, while total change is necessary for strong support of others. Thus, multiple types of analyses will be necessary to fully resolve lepidopteran phylogeny.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mobyle: a new full web bioinformatics framework

              Motivation: For the biologist, running bioinformatics analyses involves a time-consuming management of data and tools. Users need support to organize their work, retrieve parameters and reproduce their analyses. They also need to be able to combine their analytic tools using a safe data flow software mechanism. Finally, given that scientific tools can be difficult to install, it is particularly helpful for biologists to be able to use these tools through a web user interface. However, providing a web interface for a set of tools raises the problem that a single web portal cannot offer all the existing and possible services: it is the user, again, who has to cope with data copy among a number of different services. A framework enabling portal administrators to build a network of cooperating services would therefore clearly be beneficial. Results: We have designed a system, Mobyle, to provide a flexible and usable Web environment for defining and running bioinformatics analyses. It embeds simple yet powerful data management features that allow the user to reproduce analyses and to combine tools using a hierarchical typing system. Mobyle offers invocation of services distributed over remote Mobyle servers, thus enabling a federated network of curated bioinformatics portals without the user having to learn complex concepts or to install sophisticated software. While being focused on the end user, the Mobyle system also addresses the need, for the bioinfomatician, to automate remote services execution: PlayMOBY is a companion tool that automates the publication of BioMOBY web services, using Mobyle program definitions. Availability: The Mobyle system is distributed under the terms of the GNU GPLv2 on the project web site (http://bioweb2.pasteur.fr/projects/mobyle/). It is already deployed on three servers: http://mobyle.pasteur.fr, http://mobyle.rpbs.univ-paris-diderot.fr and http://lipm-bioinfo.toulouse.inra.fr/Mobyle. The PlayMOBY companion is distributed under the terms of the CeCILL license, and is available at http://lipm-bioinfo.toulouse.inra.fr/biomoby/PlayMOBY/. Contact: mobyle-support@pasteur.fr; mobyle-support@rpbs.univ-paris-diderot.fr; letondal@pasteur.fr Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Journal
                Syst Biol
                Syst. Biol
                sysbio
                sysbio
                Systematic Biology
                Oxford University Press
                1063-5157
                1076-836X
                September 2014
                30 April 2014
                30 April 2014
                : 63
                : 5
                : 812-818
                Affiliations
                1Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20742-3360, USA, and 2Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, USA
                Author notes
                *Correspondence to be sent to: Center for Bioinformatics and Computational Biology, University of Maryland, Biomolecular Sciences Building, College Park, MD, 20742-3360, USA; E-mail: adam.bazinet@ 123456umiacs.umd.edu .

                Associate Editor: David Posada

                Article
                syu031
                10.1093/sysbio/syu031
                4141202
                24789072
                f762bb95-6586-4a9b-b38d-ea25a5bf8bf2
                © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com.

                History
                : 2 February 2014
                : 21 March 2014
                : 22 April 2014
                Page count
                Pages: 7
                Categories
                Software for Systematics and Evolution

                Animal science & Zoology
                Animal science & Zoology

                Comments

                Comment on this article