16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Resolved Metagenomics Extends the Environmental Distribution of the Verrucomicrobia Phylum to the Deep Terrestrial Subsurface

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Verrucomicrobia phylum of bacteria is widespread in many different ecosystems; however, its role in microbial communities remains poorly understood. Verrucomicrobia are often low-abundance community members, yet previous research suggests they play a major role in organic carbon degradation. While Verrucomicrobia remain poorly represented in culture collections, numerous genomes have been reconstructed from metagenomic data sets in recent years. The study of genomes from across the phylum allows for an extensive assessment of their potential ecosystem roles. The significance of this work is (i) the recovery of a novel genus of Verrucomicrobia from 2.3 km in the subsurface with the ability to withstand the extreme conditions that characterize this environment, and (ii) the most extensive assessment of ecophysiological traits encoded by Verrucomicrobia genomes to date. We show that members of this phylum are specialist organic polymer degraders that can withstand a wider range of environmental conditions than previously thought.

          ABSTRACT

          Bacteria of the phylum Verrucomicrobia are prevalent and are particularly common in soil and freshwater environments. Their cosmopolitan distribution and reported capacity for polysaccharide degradation suggests members of Verrucomicrobia are important contributors to carbon cycling across Earth’s ecosystems. Despite their prevalence, the Verrucomicrobia are underrepresented in isolate collections and genome databases; consequently, their ecophysiological roles may not be fully realized. Here, we expand genomic sampling of the Verrucomicrobia phylum by describing a novel genus, “ Candidatus Marcellius,” belonging to the order Opitutales. “ Ca. Marcellius” was recovered from a shale-derived produced fluid metagenome collected 313 days after hydraulic fracturing, the deepest environment from which a member of the Verrucomicrobia has been recovered to date. We uncover genomic attributes that may explain the capacity of this organism to inhabit a shale gas well, including the potential for utilization of organic polymers common in hydraulic fracturing fluids, nitrogen fixation, adaptation to high salinities, and adaptive immunity via CRISPR-Cas. To illuminate the phylogenetic and environmental distribution of these metabolic and adaptive traits across the Verrucomicrobia phylum, we performed a comparative genomic analysis of 31 publicly available, nearly complete Verrucomicrobia genomes. Our genomic findings extend the environmental distribution of the Verrucomicrobia 2.3 kilometers into the terrestrial subsurface. Moreover, we reveal traits widely encoded across members of the Verrucomicrobia, including the capacity to degrade hemicellulose and to adapt to physical and biological environmental perturbations, thereby contributing to the expansive habitat range reported for this phylum.

          IMPORTANCE The Verrucomicrobia phylum of bacteria is widespread in many different ecosystems; however, its role in microbial communities remains poorly understood. Verrucomicrobia are often low-abundance community members, yet previous research suggests they play a major role in organic carbon degradation. While Verrucomicrobia remain poorly represented in culture collections, numerous genomes have been reconstructed from metagenomic data sets in recent years. The study of genomes from across the phylum allows for an extensive assessment of their potential ecosystem roles. The significance of this work is (i) the recovery of a novel genus of Verrucomicrobia from 2.3 km in the subsurface with the ability to withstand the extreme conditions that characterize this environment, and (ii) the most extensive assessment of ecophysiological traits encoded by Verrucomicrobia genomes to date. We show that members of this phylum are specialist organic polymer degraders that can withstand a wider range of environmental conditions than previously thought.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla.

          BD1-5, OP11, and OD1 bacteria have been widely detected in anaerobic environments, but their metabolisms remain unclear owing to lack of cultivated representatives and minimal genomic sampling. We uncovered metabolic characteristics for members of these phyla, and a new lineage, PER, via cultivation-independent recovery of 49 partial to near-complete genomes from an acetate-amended aquifer. All organisms were nonrespiring anaerobes predicted to ferment. Three augment fermentation with archaeal-like hybrid type II/III ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) that couples adenosine monophosphate salvage with CO(2) fixation, a pathway not previously described in Bacteria. Members of OD1 reduce sulfur and may pump protons using archaeal-type hydrogenases. For six organisms, the UGA stop codon is translated as tryptophan. All bacteria studied here may play previously unrecognized roles in hydrogen production, sulfur cycling, and fermentation of refractory sedimentary carbon.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Microbial life at high salt concentrations: phylogenetic and metabolic diversity

            Halophiles are found in all three domains of life. Within the Bacteria we know halophiles within the phyla Cyanobacteria, Proteobacteria, Firmicutes, Actinobacteria, Spirochaetes, and Bacteroidetes. Within the Archaea the most salt-requiring microorganisms are found in the class Halobacteria. Halobacterium and most of its relatives require over 100–150 g/l salt for growth and structural stability. Also within the order Methanococci we encounter halophilic species. Halophiles and non-halophilic relatives are often found together in the phylogenetic tree, and many genera, families and orders have representatives with greatly different salt requirement and tolerance. A few phylogenetically coherent groups consist of halophiles only: the order Halobacteriales, family Halobacteriaceae (Euryarchaeota) and the anaerobic fermentative bacteria of the order Halanaerobiales (Firmicutes). The family Halomonadaceae (Gammaproteobacteria) almost exclusively contains halophiles. Halophilic microorganisms use two strategies to balance their cytoplasm osmotically with their medium. The first involves accumulation of molar concentrations of KCl. This strategy requires adaptation of the intracellular enzymatic machinery, as proteins should maintain their proper conformation and activity at near-saturating salt concentrations. The proteome of such organisms is highly acidic, and most proteins denature when suspended in low salt. Such microorganisms generally cannot survive in low salt media. The second strategy is to exclude salt from the cytoplasm and to synthesize and/or accumulate organic 'compatible' solutes that do not interfere with enzymatic activity. Few adaptations of the cells' proteome are needed, and organisms using the 'organic-solutes-in strategy' often adapt to a surprisingly broad salt concentration range. Most halophilic Bacteria, but also the halophilic methanogenic Archaea use such organic solutes. A variety of such solutes are known, including glycine betaine, ectoine and other amino acid derivatives, sugars and sugar alcohols. The 'high-salt-in strategy' is not limited to the Halobacteriaceae. The Halanaerobiales (Firmicutes) also accumulate salt rather than organic solutes. A third, phylogenetically unrelated organism accumulates KCl: the red extremely halophilic Salinibacter (Bacteroidetes), recently isolated from saltern crystallizer brines. Analysis of its genome showed many points of resemblance with the Halobacteriaceae, probably resulting from extensive horizontal gene transfer. The case of Salinibacter shows that more unusual types of halophiles may be waiting to be discovered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The under-recognized dominance of Verrucomicrobia in soil bacterial communities.

              Verrucomicrobia are ubiquitous in soil, but members of this bacterial phylum are thought to be present at low frequency in soil, with few studies focusing specifically on verrucomicrobial abundance, diversity, and distribution. Here we used barcoded pyrosequencing to analyze verrucomicrobial communities in surface soils collected across a range of biomes in Antarctica, Europe, and the Americas (112 samples), as well as soils collected from pits dug in a montane coniferous forest (69 samples). Data collected from surface horizons indicate that Verrucomicrobia average 23% of bacterial sequences, making them far more abundant than had been estimated. We show that this underestimation is likely due to primer bias, as many of the commonly used PCR primers appear to exclude verrucomicrobial 16S rRNA genes during amplification. Verrucomicrobia were detected in 180 out of 181 soils examined, with members of the class Spartobacteria dominating verrucomicrobial communities in nearly all biomes and soil depths. The relative abundance of Verrucomicrobia was highest in grasslands and in subsurface soil horizons, where they were often the dominant bacterial phylum. Although their ecology remains poorly understood, Verrucomicrobia appear to be dominant in many soil bacterial communities across the globe, making additional research on their ecology clearly necessary.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mSphere
                mSphere
                msph
                msph
                mSphere
                mSphere
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5042
                18 December 2019
                Nov-Dec 2019
                : 4
                : 6
                : e00613-19
                Affiliations
                [a ]Department of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
                [b ]Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
                [c ]Centre for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
                [d ]School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
                [e ]College of Engineering and Physical Sciences, University of New Hampshire, Durham, New Hampshire, USA
                University of Wisconsin-Madison
                Author notes
                Address correspondence to Sophie L. Nixon, sophie.nixon@ 123456manchester.ac.uk , or Kelly C. Wrighton, kwrighton@ 123456gmail.com .

                Citation Nixon SL, Daly RA, Borton MA, Solden LM, Welch SA, Cole DR, Mouser PJ, Wilkins MJ, Wrighton KC. 2019. Genome-resolved metagenomics extends the environmental distribution of the Verrucomicrobia phylum to the deep terrestrial subsurface. mSphere 4:e00613-19. https://doi.org/10.1128/mSphere.00613-19.

                Author information
                https://orcid.org/0000-0003-2914-8386
                https://orcid.org/0000-0003-2316-0915
                Article
                mSphere00613-19
                10.1128/mSphere.00613-19
                6920513
                31852806
                f7f5da19-a44a-4135-915a-0a05244338ea
                Copyright © 2019 Nixon et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 21 August 2019
                : 1 December 2019
                Page count
                supplementary-material: 8, Figures: 4, Tables: 1, Equations: 0, References: 80, Pages: 18, Words: 12546
                Funding
                Funded by: Department of Energy Joint Genome Institute;
                Award ID: 1931
                Award Recipient :
                Funded by: National Science Foundation (NSF), https://doi.org/10.13039/100000001;
                Award ID: 1342701
                Award Recipient : Award Recipient : Award Recipient : Award Recipient : Award Recipient : Award Recipient : Award Recipient :
                Funded by: UK Research and Innovation | Natural Environment Research Council (NERC), https://doi.org/10.13039/501100000270;
                Award ID: NE/R013462/1
                Award Recipient :
                Funded by: National Science Foundation (NSF), https://doi.org/10.13039/100000001;
                Award ID: EAR-1847684
                Award Recipient :
                Categories
                Research Article
                Applied and Environmental Science
                Custom metadata
                November/December 2019

                glycoside hydrolases,viruses,shale,hypersaline,hydraulic fracturing

                Comments

                Comment on this article