24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Podargiform Affinities of the Enigmatic Fluvioviridavis platyrhamphus and the Early Diversification of Strisores (“Caprimulgiformes” + Apodiformes)

      research-article
      1 , * , 2 , 3 , 1
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The early Eocene Green River Formation avifauna preserves exceptional exemplars of the earliest unambiguous stem representatives of many extant avian clades. We identify the basal-most member of Podargiformes (extant and fossil stem lineage frogmouths) based on a new specimen of Fluvioviridavis platyrhamphus, a unique neoavian bird from the Fossil Butte Member of the Green River Formation of Wyoming. Extant frogmouths (Podargidae) comprise approximately 13 nocturnal species with an exclusively Australasian distribution.

          Methodology/Principal Findings

          The new specimen was included in a combined phylogenetic analysis of morphological (osteology and soft tissue) and molecular sequence (cytochrome b, c-myc exon 3, and RAG) data sampling species-level taxa from both extant and extinct members of Steatornithidae, Podargidae, Caprimulgidae, Nyctibiidae, Aegothelidae, and Apodiformes ( = Strisores). New data from F. platyrhamphus help resolve phylogenetic relationships within Strisores, supporting placement of F. platyrhamphus and the European fossil form Masillapodargus longipes as basal parts of Podargiformes and also supporting a sister taxon relationship between Podargiformes and Steatornithiformes (oilbirds) within Strisores. This relationship is recovered only when fossil taxa are included, reaffirming the potential impact of stem fossil taxa on inferences of phylogenetic relationships. The well-preserved mandible and palate of the new specimen demonstrate that many of the unique characteristics of the skull that characterize the crown frogmouth clade Podargidae arose early in the evolutionary history of the clade, over 50 million years ago. Comparisons with the new specimen also indicate that Eurofluvioviridavis and Fluvioviridavis are not closely related.

          Conclusions/Significance

          Together with the European fossil frogmouth Masillapodargus, Fluvioviridavis shows that Podargiformes had a much wider geographic distribution in the past, whereas extant species are restricted to Australasia. The Eocene record of Strisores from the Green River Formation and Messel Formation indicates most major subclade divergences had already occurred by the early-middle Eocene.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion

          In recent years, avian systematics has been characterized by a diminished reliance on morphological cladistics of modern taxa, intensive palaeornithogical research stimulated by new discoveries and an inundation by analyses based on DNA sequences. Unfortunately, in contrast to significant insights into basal origins, the broad picture of neornithine phylogeny remains largely unresolved. Morphological studies have emphasized characters of use in palaeontological contexts. Molecular studies, following disillusionment with the pioneering, but non-cladistic, work of Sibley and Ahlquist, have differed markedly from each other and from morphological works in both methods and findings. Consequently, at the turn of the millennium, points of robust agreement among schools concerning higher-order neornithine phylogeny have been limited to the two basalmost and several mid-level, primary groups. This paper describes a phylogenetic (cladistic) analysis of 150 taxa of Neornithes, including exemplars from all non-passeriform families, and subordinal representatives of Passeriformes. Thirty-five outgroup taxa encompassing Crocodylia, predominately theropod Dinosauria, and selected Mesozoic birds were used to root the trees. Based on study of specimens and the literature, 2954 morphological characters were defined; these characters have been described in a companion work, approximately one-third of which were multistate (i.e. comprised at least three states), and states within more than one-half of these multistate characters were ordered for analysis. Complete heuristic searches using 10 000 random-addition replicates recovered a total solution set of 97 well-resolved, most-parsimonious trees (MPTs). The set of MPTs was confirmed by an expanded heuristic search based on 10 000 random-addition replicates and a full ratchet-augmented exploration to ascertain global optima. A strict consensus tree of MPTs included only six trichotomies, i.e. nodes differing topologically among MPTs. Bootstrapping (based on 10 000 replicates) percentages and ratchet-minimized support (Bremer) indices indicated most nodes to be robust. Several fossil Neornithes (e.g. Dinornithiformes, Aepyornithiformes) were placed within the ingroup a posteriori either through unconstrained, heursitic searches based on the complete matrix augmented by these taxa separately or using backbone-constraints. Analysis confirmed the topology among outgroup Theropoda and achieved robust resolution at virtually all levels of the Neornithes. Findings included monophyly of the palaeognathous birds, comprising the sister taxa Tinamiformes and ratites, respectively, and the Anseriformes and Galliformes as monophyletic sister-groups, together forming the sister-group to other Neornithes exclusive of the Palaeognathae (Neoaves). Noteworthy inferences include: (i) the sister-group to remaining Neoaves comprises a diversity of marine and wading birds; (ii) Podicipedidae are the sister-group of Gaviidae, and not closely related to the Phoenicopteridae, as recently suggested; (iii) the traditional Pelecaniformes, including the shoebill (Balaeniceps rex) as sister-taxon to other members, are monophyletic; (iv) traditional Ciconiiformes are monophyletic; (v) Strigiformes and Falconiformes are sister-groups; (vi) Cathartidae is the sister-group of the remaining Falconiformes; (vii) Ralliformes (Rallidae and Heliornithidae) are the sister-group to the monophyletic Charadriiformes, with the traditionally composed Gruiformes and Turniciformes (Turnicidae and Mesitornithidae) sequentially paraphyletic to the entire foregoing clade; (viii) Opisthocomus hoazin is the sister-taxon to the Cuculiformes (including the Musophagidae); (ix) traditional Caprimulgiformes are monophyletic and the sister-group of the Apodiformes; (x) Trogoniformes are the sister-group of Coliiformes; (xi) Coraciiformes, Piciformes and Passeriformes are mutually monophyletic and closely related; and (xii) the Galbulae are retained within the Piciformes. Unresolved portions of the Neornithes (nodes having more than one most-parsimonious solution) comprised three parts of the tree: (a) several interfamilial nodes within the Charadriiformes; (b) a trichotomy comprising the (i) Psittaciformes, (ii) Columbiformes and (iii) Trogonomorphae (Trogoniformes, Coliiformes) + Passerimorphae (Coraciiformes, Piciformes, Passeriformes); and (c) a trichotomy comprising the Coraciiformes, Piciformes and Passeriformes. The remaining polytomies were among outgroups, although several of the highest-order nodes were only marginally supported; however, the majority of nodes were resolved and met or surpassed conventional standards of support. Quantitative comparisons with alternative hypotheses, examination of highly supportive and diagnostic characters for higher taxa, correspondences with prior studies, complementarity and philosophical differences with palaeontological phylogenetics, promises and challenges of palaeogeography and calibration of evolutionary rates of birds, and classes of promising evidence and future directions of study are reviewed. Homology, as applied to avian examples of apparent homologues, is considered in terms of recent theory, and a revised annotated classification of higher-order taxa of Neornithes and other closely related Theropoda is proposed. © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society, 2007, 149, 1–95.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Paleogene Fossil Birds

              Bookmark
              • Record: found
              • Abstract: not found
              • Book Chapter: not found

              THE FOSSIL RECORD OF BIRDS

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                30 November 2011
                : 6
                : 11
                : e26350
                Affiliations
                [1 ]Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, United States of America
                [2 ]Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
                [3 ]Department of Paleontology, North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States of America
                University of Lethbridge, Canada
                Author notes

                Conceived and designed the experiments: SJN DTK JAC. Performed the experiments: SJN DTK. Analyzed the data: SJN DTK JAC. Wrote the paper: SJN DTK JAC.

                Article
                PONE-D-11-10037
                10.1371/journal.pone.0026350
                3227577
                22140427
                f82860a1-0169-4478-81a4-6f7041fb26fb
                Nesbitt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 5 June 2011
                : 25 September 2011
                Page count
                Pages: 14
                Categories
                Research Article
                Biology
                Ecology
                Biogeography
                Evolutionary Biology
                Evolutionary Systematics
                Taxonomy
                Animal Taxonomy
                Phylogenetics
                Paleontology
                Paleobiology
                Vertebrate Paleontology
                Paleontology
                Biogeography
                Paleobiology
                Vertebrate Paleontology
                Zoology
                Animal Phylogenetics
                Ornithology
                Earth Sciences
                Paleontology
                Paleobiology
                Vertebrate Paleontology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article