31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid improvements to rural Ugandan housing and their association with malaria from intense to reduced transmission: a cohort study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          Rapid population growth in Africa requires an urgent expansion and improvement of housing options. Improving housing presents a promising opportunity for malaria control by reducing indoor exposure to mosquitoes. We measured recent changes in house design in rural Uganda and evaluated their association with malaria in relation to a mass scale-up of control efforts.

          Methods

          This analysis was part of a cohort study designed to compare temporal changes in malaria incidence from a cohort of children and adults with temporal changes in malaria test positivity rate from health facility surveillance. All children aged 6 months to 10 years (n=384) living in 107 households in Nagongera sub-country, Tororo, Uganda, were given long-lasting insecticide-treated nets and followed between Aug 19, 2011, and June 30, 2017. Repeat rounds of indoor residual spraying of insecticide were initiated on Dec 5, 2014. Socioeconomic data were collected at two timepoints (Sept 25–Oct 9, 2013 and June 21–July 11, 2016) and houses were classified as modern (cement, wood, or metal walls, tiled or metal roof, and closed eaves) or traditional (all other homes). Associations between house design and three outcomes were evaluated before and after the introduction of indoor residual spraying: human biting rate estimated monthly in each household using US Centers for Disease Control and Prevention light traps; parasite prevalence measured routinely by microscopy every 3 months before indoor residual spraying and monthly after indoor residual spraying; and malaria incidence measured by passive surveillance.

          Findings

          The implementation of indoor residual spraying was associated with significant declines in human biting rate (33·5 vs 2·7 Anopheles per house per night after indoor residual spraying, p<0·0001), parasite prevalence (32·0% vs 14·0%, p<0·0001), and malaria incidence (3·0 vs 0·5 episodes per person-year at risk, p<0·0001). The prevalence of modern housing increased from 23·4% in 2013 to 45·4% in 2016 (p=0·001). Compared with traditional houses, modern houses were associated with a 48% reduction in human biting rate before indoor residual spraying (adjusted incidence rate ratio [aIRR] 0·52, 95% CI 0·36–0·73, p=0·0002), and a 73% reduction after indoor residual spraying (aIRR 0·27, 0·17–0·42, p<0·0001). Before indoor residual spraying, there was no association between house type and parasite prevalence, but after indoor residual spraying there was a 57% reduction in the odds of parasitaemia in modern houses compared with traditional houses, controlling for age, sex, and socioeconomic position (adjusted odds ratio 0·43, 95% CI 0·24–0·77, p=0·004). House type was not associated with malaria incidence before or after indoor residual spraying.

          Interpretation

          House design improved rapidly in rural Uganda and was associated with additional reductions in mosquito density and parasite prevalence following the introduction of indoor residual spraying. Changes to house design in endemic Africa, including closing eaves and the replacement of traditional building materials, might help further the gains achieved with more widely accepted malaria control interventions.

          Funding

          US National Institutes of Health, Bill & Melinda Gates Foundation, and Medical Research Council UK.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The evidence for improving housing to reduce malaria: a systematic review and meta-analysis

          Background The global malaria burden has fallen since 2000, sometimes before large-scale vector control programmes were initiated. While long-lasting insecticide-treated nets and indoor residual spraying are highly effective interventions, this study tests the hypothesis that improved housing can reduce malaria by decreasing house entry by malaria mosquitoes. Methods A systematic review and meta-analysis was conducted to assess whether modern housing is associated with a lower risk of malaria than traditional housing, across all age groups and malaria-endemic settings. Six electronic databases were searched to identify intervention and observational studies published from 1 January, 1900 to 13 December, 2013, measuring the association between house design and malaria. The primary outcome measures were parasite prevalence and incidence of clinical malaria. Crude and adjusted effects were combined in fixed- and random-effects meta-analyses, with sub-group analyses for: overall house type (traditional versus modern housing); screening; main wall, roof and floor materials; eave type; ceilings and elevation. Results Of 15,526 studies screened, 90 were included in a qualitative synthesis and 53 reported epidemiological outcomes, included in a meta-analysis. Of these, 39 (74 %) showed trends towards a lower risk of epidemiological outcomes associated with improved house features. Of studies assessing the relationship between modern housing and malaria infection (n = 11) and clinical malaria (n = 5), all were observational, with very low to low quality evidence. Residents of modern houses had 47 % lower odds of malaria infection compared to traditional houses (adjusted odds ratio (OR) 0°53, 95 % confidence intervals (CI) 0°42–0°67, p < 0°001, five studies) and a 45–65 % lower odds of clinical malaria (case–control studies: adjusted OR 0°35, 95 % CI 0°20–0°62, p <0°001, one study; cohort studies: adjusted rate ratio 0°55, 95 % CI 0°36–0°84, p = 0°005, three studies). Evidence of a high risk of bias was found within studies. Conclusions Despite low quality evidence, the direction and consistency of effects indicate that housing is an important risk factor for malaria. Future research should evaluate the protective effect of specific house features and incremental housing improvements associated with socio-economic development. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0724-1) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in The Gambia: a randomised controlled trial.

            House screening should protect people against malaria. We assessed whether two types of house screening--full screening of windows, doors, and closing eaves, or installation of screened ceilings--could reduce house entry of malaria vectors and frequency of anaemia in children in an area of seasonal malaria transmission. During 2006 and 2007, 500 occupied houses in and near Farafenni town in The Gambia, an area with low use of insecticide-treated bednets, were randomly assigned to receive full screening, screened ceilings, or no screening (control). Randomisation was done by computer-generated list, in permuted blocks of five houses in the ratio 2:2:1. Screening was not treated with insecticide. Exposure to mosquitoes indoors was assessed by fortnightly light trap collections during the transmission season. Primary endpoints included the number of female Anopheles gambiae sensu lato mosquitoes collected per trap per night. Secondary endpoints included frequency of anaemia (haemoglobin concentration <80 g/L) and parasitaemia at the end of the transmission season in children (aged 6 months to 10 years) who were living in the study houses. Analysis was by modified intention to treat (ITT), including all randomised houses for which there were some outcome data and all children from those houses who were sampled for haemoglobin and parasitaemia. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN51184253. 462 houses were included in the modified ITT analysis (full screening, n=188; screened ceilings, n=178; control, n=96). The mean number of A gambiae caught in houses without screening was 37.5 per trap per night (95% CI 31.6-43.3), compared with 15.2 (12.9-17.4) in houses with full screening (ratio of means 0.41, 95% CI 0.31-0.54; p<0.0001) and 19.1 (16.1-22.1) in houses with screened ceilings (ratio 0.53, 0.40-0.70; p<0.0001). 755 children completed the study, of whom 731 had complete clinical and covariate data and were used in the analysis of clinical outcomes. 30 (19%) of 158 children from control houses had anaemia, compared with 38 (12%) of 309 from houses with full screening (adjusted odds ratio [OR] 0.53, 95% CI 0.29-0.97; p=0.04), and 31 (12%) of 264 from houses with screened ceilings (OR 0.51, 0.27-0.96; p=0.04). Frequency of parasitaemia did not differ between intervention and control groups. House screening substantially reduced the number of mosquitoes inside houses and could contribute to prevention of anaemia in children. Medical Research Council.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Malaria transmission, infection, and disease at three sites with varied transmission intensity in Uganda: implications for malaria control.

              The intensification of control interventions has led to marked reductions in malaria burden in some settings, but not others. To provide a comprehensive description of malaria epidemiology in Uganda, we conducted surveillance studies over 24 months in 100 houses randomly selected from each of three subcounties: Walukuba (peri-urban), Kihihi (rural), and Nagongera (rural). Annual entomological inoculation rate (aEIR) was estimated from monthly Centers for Disease Control and Prevention (CDC) light trap mosquito collections. Children aged 0.5-10 years were provided long-lasting insecticidal nets (LLINs) and followed for measures of parasite prevalence, anemia and malaria incidence. Estimates of aEIR were 2.8, 32.0, and 310 infectious bites per year, and estimates of parasite prevalence 7.4%, 9.3%, and 28.7% for Walukuba, Kihihi, and Nagongera, respectively. Over the 2-year study, malaria incidence per person-years decreased in Walukuba (0.51 versus 0.31, P = 0.001) and increased in Kihihi (0.97 versus 1.93, P < 0.001) and Nagongera (2.33 versus 3.30, P < 0.001). Of 2,582 episodes of malaria, only 8 (0.3%) met criteria for severe disease. The prevalence of anemia was low and not associated with transmission intensity. In our cohorts, where LLINs and prompt effective treatment were provided, the risk of complicated malaria and anemia was extremely low. However, malaria incidence was high and increased over time at the two rural sites, suggesting improved community-wide coverage of LLIN and additional malaria control interventions are needed in Uganda.
                Bookmark

                Author and article information

                Contributors
                Journal
                Lancet Planet Health
                Lancet Planet Health
                The Lancet. Planetary Health
                Elsevier B.V
                2542-5196
                1 February 2018
                February 2018
                : 2
                : 2
                : e83-e94
                Affiliations
                [a ]Infectious Disease Research Collaboration, Mulago Hospital Complex, Kampala, Uganda
                [b ]Department of Geography and Environment, University of Southampton, Southampton, UK
                [c ]Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
                [d ]Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
                [e ]Department of Medicine, Makerere University College of Health Science, Kampala, Uganda
                [f ]Department of Biosciences, Durham University, Durham, UK
                [g ]Department of Population Health, London School of Hygiene & Tropical Medicine, London, UK
                [h ]Department of Medicine, University of California, San Francisco, CA, USA
                Author notes
                [* ]Correspondence to: Dr Lucy S Tusting, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7LF, UKCorrespondence to: Dr Lucy S Tusting, Oxford Big Data InstituteLi Ka Shing Centre for Health Information and DiscoveryNuffield Department of MedicineUniversity of OxfordOld Road CampusRoosevelt DriveOxfordOX3 7LFUK lucy.tusting@ 123456well.ox.ac.uk
                [†]

                Contributed equally

                Article
                S2542-5196(18)30010-X
                10.1016/S2542-5196(18)30010-X
                5887083
                29615240
                f837bfac-7de6-4355-a982-7ddccc1967e9
                © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                Comments

                Comment on this article