29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An In Vitro Model for Oral Mixed Biofilms of Candida albicans and Streptococcus gordonii in Synthetic Saliva

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a member of the normal human oral microbiota, the fungus Candida albicans is often found in association with Streptococcus gordonii, a member of dental plaque forming bacteria. Evidence suggests that S. gordonii serves as a facilitator of C. albicans adherence to dental tissues, which represents a clinically relevant problem, particularly for immunocompromised individuals that could subsequently develop fungal infections. In this study we describe the development of a relatively simple and economical in vitro model that allows for the growth of mixed bacterial/fungal biofilms in 96-well microtiter plates. We have applied this method to test and compare the growth characteristics of single and dual species biofilms in traditional microbiological media versus a synthetic saliva medium (basal medium mucin, BMM) that more closely resembles physiological conditions within the oral cavity. Results indicated a synergistic effect for the formation of biofilms when both microorganisms were seeded together under all conditions tested. The structural and architectural features of the resulting biofilms were further characterized using scanning electron microscopy and confocal scanning laser microscopy. We also performed drug susceptibility assays against single and mixed species biofilms using commonly used antifungals and antibacterial antibiotics, both in monotherapy and in combination therapy, for a direct comparison of resistance against antimicrobial treatment. As expected, mixed species biofilms displayed higher levels of resistance to antimicrobial treatment at every dose tested in both traditional media and BMM synthetic saliva, as compared to single-species biofilms.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol.

          The inoculum size effect in the dimorphic fungus Candida albicans results from production of an extracellular quorum-sensing molecule (QSM). This molecule prevents mycelial development in both a growth morphology assay and a differentiation assay using three chemically distinct triggers for germ tube formation (GTF): L-proline, N-acetylglucosamine, and serum (either pig or fetal bovine). In all cases, the presence of QSM prevents the yeast-to-mycelium conversion, resulting in actively budding yeasts without influencing cellular growth rates. QSM exhibits general cross-reactivity within C. albicans in that supernatants from strain A72 are active on five other strains of C. albicans and vice versa. The QSM excreted by C. albicans is farnesol (C(15)H(26)O; molecular weight, 222.37). QSM is extracellular, and is produced continuously during growth and over a temperature range from 23 to 43 degrees C, in amounts roughly proportional to the CFU/milliliter. Production is not dependent on the type of carbon source nor nitrogen source or on the chemical nature of the growth medium. Both commercial mixed isomer and (E,E)-farnesol exhibited QSM activity (the ability to prevent GTF) at a level sufficient to account for all the QSM activity present in C. albicans supernatants, i.e., 50% GTF at ca. 30 to 35 microM. Nerolidol was ca. two times less active than farnesol. Neither geraniol (C(10)), geranylgeraniol (C(20)), nor farnesyl pyrophosphate had any QSM activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Medically important bacterial-fungal interactions.

            Whether it is in the setting of disease or in a healthy state, the human body contains a diverse range of microorganisms, including bacteria and fungi. The interactions between these taxonomically diverse microorganisms are highly dynamic and dependent on a multitude of microorganism and host factors. Human disease can develop from an imbalance between commensal bacteria and fungi or from invasion of particular host niches by opportunistic bacterial and fungal pathogens. This Review describes the clinical and molecular characteristics of bacterial-fungal interactions that are relevant to human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo.

              Streptococcus mutans is often cited as the main bacterial pathogen in dental caries, particularly in early-childhood caries (ECC). S. mutans may not act alone; Candida albicans cells are frequently detected along with heavy infection by S. mutans in plaque biofilms from ECC-affected children. It remains to be elucidated whether this association is involved in the enhancement of biofilm virulence. We showed that the ability of these organisms together to form biofilms is enhanced in vitro and in vivo. The presence of C. albicans augments the production of exopolysaccharides (EPS), such that cospecies biofilms accrue more biomass and harbor more viable S. mutans cells than single-species biofilms. The resulting 3-dimensional biofilm architecture displays sizeable S. mutans microcolonies surrounded by fungal cells, which are enmeshed in a dense EPS-rich matrix. Using a rodent model, we explored the implications of this cross-kingdom interaction for the pathogenesis of dental caries. Coinfected animals displayed higher levels of infection and microbial carriage within plaque biofilms than animals infected with either species alone. Furthermore, coinfection synergistically enhanced biofilm virulence, leading to aggressive onset of the disease with rampant carious lesions. Our in vitro data also revealed that glucosyltransferase-derived EPS is a key mediator of cospecies biofilm development and that coexistence with C. albicans induces the expression of virulence genes in S. mutans (e.g., gtfB, fabM). We also found that Candida-derived β1,3-glucans contribute to the EPS matrix structure, while fungal mannan and β-glucan provide sites for GtfB binding and activity. Altogether, we demonstrate a novel mutualistic bacterium-fungus relationship that occurs at a clinically relevant site to amplify the severity of a ubiquitous infectious disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                12 May 2016
                2016
                : 7
                : 686
                Affiliations
                [1] 1Department of Biology, The University of Texas at San Antonio San Antonio, TX, USA
                [2] 2South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio San Antonio, TX, USA
                [3] 3Department of Biomedical Engineering, The University of Texas at San Antonio San Antonio, TX, USA
                Author notes

                Edited by: Caroline Westwater, Medical University of South Carolina, USA

                Reviewed by: Mira Edgerton, State University of New York at Buffalo, USA; Anna Dongari-Bagtzoglou, University of Connecticut Health Center, USA

                *Correspondence: Jose L. Lopez-Ribot, jose.lopezribot@ 123456utsa.edu

                This article was submitted to Fungi and Their Interactions, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2016.00686
                4864667
                27242712
                f864295e-67cc-4194-b3b3-2fa8b044c7f6
                Copyright © 2016 Montelongo-Jauregui, Srinivasan, Ramasubramanian and Lopez-Ribot.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 February 2016
                : 26 April 2016
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 68, Pages: 13, Words: 0
                Funding
                Funded by: National Institute of Dental and Craniofacial Research 10.13039/100000072
                Award ID: R01DE023510
                Funded by: National Institute of Allergy and Infectious Diseases 10.13039/100000060
                Award ID: R01AI119554
                Funded by: Army Research Office 10.13039/100000183
                Award ID: W911NF-11-1-0136
                Funded by: National Institute on Minority Health and Health Disparities 10.13039/100006545
                Award ID: G12MD007591
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                candida albicans,streptococcus gordonii,mixed biofilms,synthetic saliva

                Comments

                Comment on this article