Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Characterization and Expression of a Heat Shock Protein Gene (HSP90) from the Carmine Spider Mite, Tetranychus cinnabarinus (Boisduval)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, the cDNA of Tetranychus cinnabarinus (Boisduval) (Acarina: Tetranychidae) HSP90 (designated TcHSP90) was cloned using a combination of the homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of TcHSP90 is 2595 bp, including a 5′-untranslated region (UTR) of 177 bp, 3′-UTR of 249 bp, and an open reading frame (ORF) of 2169 bp. The ORF encodes a polypeptide of 722 amino acids with a predicted molecular weight of 83.45 kDa and a theoretical isoelectric point of 4.81. There is an mRNA polyadenylation signal of ATTAAA at the positions 2558–2564. In addition, the expression pattern of TcHSP90 mRNA relative to that of β-actin gene in the three stains of T. cinnabarinus (AbR, abamectin-resistant strain; HR, heat-resistant strain; SS, the susceptible strain) were examined by using fluorescent real time quantitative PCR after the impact of abamectin, high and low temperature, respectively. The results showed that under the normal condition, the mRNA level of TcHSP90 was 1.64 and 1.29-fold higher in the AbR and HR than in SS, respectively. After 8 h treatment with abamectin, the TcHSP90 mRNA levels of SS, AbR, and HR were 1.25, 1.87, and 2.05-fold higher than those of their untreated controls, respectively. The TcHSP90 mRNA levels of SS, AbR, and HR were also significantly increased after being induced at 40° C for 1 h, and they were 3.76, 3.42, and 3.79-fold higher than those of their untreated controls, respectively. The mRNA level of TcHSP90 was also significantly increased after being induced at 4° C for 1 h. These results suggest that TcHSP90 might be involved in the abamectin and extreme temperature resistance or tolerance.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: not found
          • Article: not found

          MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.

          S. KUMAR (2004)
          With its theoretical basis firmly established in molecular evolutionary and population genetics, the comparative DNA and protein sequence analysis plays a central role in reconstructing the evolutionary histories of species and multigene families, estimating rates of molecular evolution, and inferring the nature and extent of selective forces shaping the evolution of genes and genomes. The scope of these investigations has now expanded greatly owing to the development of high-throughput sequencing techniques and novel statistical and computational methods. These methods require easy-to-use computer programs. One such effort has been to produce Molecular Evolutionary Genetics Analysis (MEGA) software, with its focus on facilitating the exploration and analysis of the DNA and protein sequence variation from an evolutionary perspective. Currently in its third major release, MEGA3 contains facilities for automatic and manual sequence alignment, web-based mining of databases, inference of the phylogenetic trees, estimation of evolutionary distances and testing evolutionary hypotheses. This paper provides an overview of the statistical methods, computational tools, and visual exploration modules for data input and the results obtainable in MEGA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine.

            The adaptor protein Hop mediates the association of the molecular chaperones Hsp70 and Hsp90. The TPR1 domain of Hop specifically recognizes the C-terminal heptapeptide of Hsp70 while the TPR2A domain binds the C-terminal pentapeptide of Hsp90. Both sequences end with the motif EEVD. The crystal structures of the TPR-peptide complexes show the peptides in an extended conformation, spanning a groove in the TPR domains. Peptide binding is mediated by electrostatic interactions with the EEVD motif, with the C-terminal aspartate acting as a two-carboxylate anchor, and by hydrophobic interactions with residues upstream of EEVD. The hydrophobic contacts with the peptide are critical for specificity. These results explain how TPR domains participate in the ordered assembly of Hsp70-Hsp90 multichaperone complexes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cells in stress: transcriptional activation of heat shock genes.

              R Morimoto (1993)
                Bookmark

                Author and article information

                Journal
                J Insect Sci
                J. Insect Sci
                insc
                Journal of Insect Science
                University of Wisconsin Library
                1536-2442
                2010
                15 July 2010
                : 10
                : 112
                Affiliations
                [ 1 ]Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400716, China
                [ 2 ]Plant Science College, Tarim University, Ala, Xingjiang 843300, China
                Author notes
                [*] [ c* ] yhliu@ 123456swu.edu.cn , [ * ]Corresponding author

                Associate Editor: Brad Coates was editor of this paper.

                Article
                10.1673/031.010.11201
                3016949
                20874569
                f88a8158-d27d-49f2-9040-15337702a2cf
                © 2010

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 March 2009
                : 10 June 2009
                Page count
                Pages: 14
                Categories
                Article

                Entomology
                gene cloning,abamectin,temperature shock,comparative quantitative expression
                Entomology
                gene cloning, abamectin, temperature shock, comparative quantitative expression

                Comments

                Comment on this article