17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Simplified dark matter top-quark interactions at the LHC

      ,
      Journal of High Energy Physics
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Parton distributions for the LHC

          We present updated leading-order, next-to-leading order and next-to-next-to-leading order parton distribution functions ("MSTW 2008") determined from global analysis of hard-scattering data within the standard framework of leading-twist fixed-order collinear factorisation in the MSbar scheme. These parton distributions supersede the previously available "MRST" sets and should be used for the first LHC data-taking and for the associated theoretical calculations. New data sets fitted include CCFR/NuTeV dimuon cross sections, which constrain the strange quark and antiquark distributions, and Tevatron Run II data on inclusive jet production, the lepton charge asymmetry from W decays and the Z rapidity distribution. Uncertainties are propagated from the experimental errors on the fitted data points using a new dynamic procedure for each eigenvector of the covariance matrix. We discuss the major changes compared to previous MRST fits, briefly compare to parton distributions obtained by other fitting groups, and give predictions for the W and Z total cross sections at the Tevatron and LHC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            FastJet user manual

            FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              PYTHIA 6.4 Physics and Manual

              The PYTHIA program can be used to generate high-energy-physics `events', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. This physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.
                Bookmark

                Author and article information

                Journal
                Journal of High Energy Physics
                J. High Energ. Phys.
                Springer Nature
                1029-8479
                June 2015
                June 12 2015
                June 2015
                : 2015
                : 6
                Article
                10.1007/JHEP06(2015)078
                f897955a-ec53-4820-90cb-23f0c41ef779
                © 2015
                History

                Comments

                Comment on this article