18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Copper, Iron, and Manganese Toxicity in Neuropsychiatric Conditions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Copper, manganese, and iron are vital elements required for the appropriate development and the general preservation of good health. Additionally, these essential metals play key roles in ensuring proper brain development and function. They also play vital roles in the central nervous system as significant cofactors for several enzymes, including the antioxidant enzyme superoxide dismutase (SOD) and other enzymes that take part in the creation and breakdown of neurotransmitters in the brain. An imbalance in the levels of these metals weakens the structural, regulatory, and catalytic roles of different enzymes, proteins, receptors, and transporters and is known to provoke the development of various neurological conditions through different mechanisms, such as via induction of oxidative stress, increased α-synuclein aggregation and fibril formation, and stimulation of microglial cells, thus resulting in inflammation and reduced production of metalloproteins. In the present review, the authors focus on neurological disorders with psychiatric signs associated with copper, iron, and manganese excess and the diagnosis and potential treatment of such disorders. In our review, we described diseases related to these metals, such as aceruloplasminaemia, neuroferritinopathy, pantothenate kinase-associated neurodegeneration (PKAN) and other very rare classical NBIA forms, manganism, attention-deficit/hyperactivity disorder (ADHD), ephedrone encephalopathy, HMNDYT1-SLC30A10 deficiency (HMNDYT1), HMNDYT2-SLC39A14 deficiency, CDG2N-SLC39A8 deficiency, hepatic encephalopathy, prion disease and “prion-like disease”, amyotrophic lateral sclerosis, Huntington’s disease, Friedreich’s ataxia, and depression.

          Related collections

          Most cited references216

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.

          Amyotrophic lateral sclerosis (ALS) is a degenerative disorder of motor neurons in the cortex, brainstem and spinal cord. Its cause is unknown and it is uniformly fatal, typically within five years. About 10% of cases are inherited as an autosomal dominant trait, with high penetrance after the sixth decade. In most instances, sporadic and autosomal dominant familial ALS (FALS) are clinically similar. We have previously shown that in some but not all FALS pedigrees the disease is linked to a genetic defect on chromosome 21q (refs 8, 9). Here we report tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O2.- to O2 and H2O2 (ref. 10). Given this linkage and the potential role of free radical toxicity in other neurodenegerative disorders, we investigated SOD1 as a candidate gene in FALS. We identified 11 different SOD1 missense mutations in 13 different FALS families.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of iron in brain ageing and neurodegenerative disorders.

            In the CNS, iron in several proteins is involved in many important processes such as oxygen transportation, oxidative phosphorylation, myelin production, and the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation and modification of lipids, proteins, carbohydrates, and DNA. During ageing, different iron complexes accumulate in brain regions associated with motor and cognitive impairment. In various neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, changes in iron homoeostasis result in altered cellular iron distribution and accumulation. MRI can often identify these changes, thus providing a potential diagnostic biomarker of neurodegenerative diseases. An important avenue to reduce iron accumulation is the use of iron chelators that are able to cross the blood-brain barrier, penetrate cells, and reduce excessive iron accumulation, thereby affording neuroprotection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Huntington's disease: a clinical review

              Huntington's disease (HD) is a fully penetrant neurodegenerative disease caused by a dominantly inherited CAG trinucleotide repeat expansion in the huntingtin gene on chromosome 4. In Western populations HD has a prevalence of 10.6-13.7 individuals per 100 000. It is characterized by cognitive, motor and psychiatric disturbance. At the cellular level mutant huntingtin results in neuronal dysfunction and death through a number of mechanisms, including disruption of proteostasis, transcription and mitochondrial function and direct toxicity of the mutant protein. Early macroscopic changes are seen in the striatum with involvement of the cortex as the disease progresses. There are currently no disease modifying treatments; therefore supportive and symptomatic management is the mainstay of treatment. In recent years there have been significant advances in understanding both the cellular pathology and the macroscopic structural brain changes that occur as the disease progresses. In the last decade there has been a large growth in potential therapeutic targets and clinical trials. Perhaps the most promising of these are the emerging therapies aimed at lowering levels of mutant huntingtin. Antisense oligonucleotide therapy is one such approach with clinical trials currently under way. This may bring us one step closer to treating and potentially preventing this devastating condition.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                22 July 2021
                August 2021
                : 22
                : 15
                : 7820
                Affiliations
                [1 ]Department of Rehabilitation Medicine, Faculty of Medicine, Warsaw Medical University, Spartańska 1, 02-637 Warsaw, Poland
                [2 ]Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; annajopowicz@ 123456gmail.com
                [3 ]Department of Early Arthritis, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland; maslinskam@ 123456gmail.com
                Author notes
                [* ]Correspondence: btarnacka@ 123456wum.edu.pl ; Tel.: +48-603944804
                Author information
                https://orcid.org/0000-0002-2211-0302
                Article
                ijms-22-07820
                10.3390/ijms22157820
                8346158
                34360586
                f8f1fcb1-e558-47f8-abc9-210fbe91232e
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 15 June 2021
                : 20 July 2021
                Categories
                Review

                Molecular biology
                copper,iron,manganese,neurodegeneration
                Molecular biology
                copper, iron, manganese, neurodegeneration

                Comments

                Comment on this article