42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First direct observation of Spin-textures in Topological Insulators : Spin-resolved ARPES as a probe of topological quantum spin Hall effect and Berry's phase

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A topologically ordered material is characterized by a rare quantum organization of electrons that evades the conventional spontaneously broken symmetry based classification of condensed matter. Exotic spin transport phenomena such as the dissipationless quantum spin Hall effect have been speculated to originate from a novel topological order whose identification requires a spin sensitive measurement, which does not exist to this date in any system (neither in Hg(Cd)Te quantum wells nor in the topological insulator BiSb). Using Mott polarimetry, we probe the spin degrees of freedom of these quantum spin Hall states and demonstrate that topological quantum numbers are uniquely determined from spin texture imaging measurements. Applying this method to the Bi{1-x}Sb{x} series, we identify the origin of its novel order and unusual chiral properties. These results taken together constitute the first observation of surface electrons collectively carrying a geometrical quantum (Berry's) phase and definite chirality (mirror Chern number, n_M =-1), which are the key electronic properties for realizing topological computing bits with intrinsic spin Hall-like topological phenomena. Our spin-resolved results not only provides the first clear proof of a topological insulating state in nature but also demonstrate the utility of spin-resolved ARPES technique in measuring the quantum spin Hall phases of matter.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          \(Z_2\) Topological Order and the Quantum Spin Hall Effect

          The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel \(Z_2\) topological invariant, which distinguishes it from an ordinary insulator. The \(Z_2\) classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number classification of the quantum Hall effect. We establish the \(Z_2\) order of the QSH phase in the two band model of graphene and propose a generalization of the formalism applicable to multi band and interacting systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Surface States of the Topological Insulator Bi_{1-x}Sb_x

            We study the electronic surface states of the semiconducting alloy BiSb. Using a phenomenological tight binding model we show that the Fermi surface of the 111 surface states encloses an odd number of time reversal invariant momenta (TRIM) in the surface Brillouin zone confirming that the alloy is a strong topological insulator. We then develop general arguments which show that spatial symmetries lead to additional topological structure, and further constrain the surface band structure. Inversion symmetric crystals have 8 Z_2 "parity invariants", which include the 4 Z_2 invariants due to time reversal. The extra invariants determine the "surface fermion parity", which specifies which surface TRIM are enclosed by an odd number of electron or hole pockets. We provide a simple proof of this result, which provides a direct link between the surface states and the bulk parity eigenvalues. We then make specific predictions for the surface state structure for several faces of BiSb. We next show that mirror invariant band structures are characterized by an integer "mirror Chern number", n_M. The sign of n_M in the topological insulator phase of BiSb is related to a previously unexplored Z_2 parameter in the L point k.p theory of pure Bi, which we refer to as the "mirror chirality", \eta. The value of \eta predicted by the tight binding model for Bi disagrees with the value predicted by a more fundamental pseudopotential calculation. This explains a subtle disagreement between our tight binding surface state calculation and previous first principles calculations on Bi. This suggests that the tight binding parameters in the Liu Allen model of Bi need to be reconsidered. Implications for existing and future ARPES experiments and spin polarized ARPES experiments will be discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              UNIVERSAL CONDUCTANCE AT THE SUPERCONDUCTOR-INSULATOR TRANSITION

                Bookmark

                Author and article information

                Journal
                16 February 2009
                2009-02-16
                Article
                10.1126/science.1167733
                0902.2617
                f9a4a63c-18a8-4178-8426-e9abd53744be

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                SCIENCE 323, 919 (2009) [13 February, 2009]
                15 pages, 3 figures, first Submitted to SCIENCE on July-22, 2008
                cond-mat.mes-hall cond-mat.dis-nn cond-mat.supr-con

                Comments

                Comment on this article