51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: important adaptations for an opportunistic pathogen

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The opportunistic human fungal pathogen Candida glabrata is closely related to Saccharomyces cerevisiae, yet it has evolved to survive within mammalian hosts. Which traits help C. glabrata to adapt to this different environment? Which specific responses are crucial for its survival in the host? The main differences seem to include an extended repertoire of adhesin genes, high drug resistance, an enhanced ability to sustain prolonged starvation and adaptations of the transcriptional wiring of key stress response genes. Here, we discuss the properties of C. glabrata with a focus on the differences to related fungi.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic expression programs in the response of yeast cells to environmental changes.

          We explored genomic expression patterns in the yeast Saccharomyces cerevisiae responding to diverse environmental transitions. DNA microarrays were used to measure changes in transcript levels over time for almost every yeast gene, as cells responded to temperature shocks, hydrogen peroxide, the superoxide-generating drug menadione, the sulfhydryl-oxidizing agent diamide, the disulfide-reducing agent dithiothreitol, hyper- and hypo-osmotic shock, amino acid starvation, nitrogen source depletion, and progression into stationary phase. A large set of genes (approximately 900) showed a similar drastic response to almost all of these environmental changes. Additional features of the genomic responses were specialized for specific conditions. Promoter analysis and subsequent characterization of the responses of mutant strains implicated the transcription factors Yap1p, as well as Msn2p and Msn4p, in mediating specific features of the transcriptional response, while the identification of novel sequence elements provided clues to novel regulators. Physiological themes in the genomic responses to specific environmental stresses provided insights into the effects of those stresses on the cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagosome formation: core machinery and adaptations.

            Eukaryotic cells employ autophagy to degrade damaged or obsolete organelles and proteins. Central to this process is the formation of autophagosomes, double-membrane vesicles responsible for delivering cytoplasmic material to lysosomes. In the past decade many autophagy-related genes, ATG, have been identified that are required for selective and/or nonselective autophagic functions. In all types of autophagy, a core molecular machinery has a critical role in forming sequestering vesicles, the autophagosome, which is the hallmark morphological feature of this dynamic process. Additional components allow autophagy to adapt to the changing needs of the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global transcriptional responses of fission yeast to environmental stress.

              We explored transcriptional responses of the fission yeast Schizosaccharomyces pombe to various environmental stresses. DNA microarrays were used to characterize changes in expression profiles of all known and predicted genes in response to five stress conditions: oxidative stress caused by hydrogen peroxide, heavy metal stress caused by cadmium, heat shock caused by temperature increase to 39 degrees C, osmotic stress caused by sorbitol, and DNA damage caused by the alkylating agent methylmethane sulfonate. We define a core environmental stress response (CESR) common to all, or most, stresses. There was a substantial overlap between CESR genes of fission yeast and the genes of budding yeast that are stereotypically regulated during stress. CESR genes were controlled primarily by the stress-activated mitogen-activated protein kinase Sty1p and the transcription factor Atf1p. S. pombe also activated gene expression programs more specialized for a given stress or a subset of stresses. In general, these "stress-specific" responses were less dependent on the Sty1p mitogen-activated protein kinase pathway and may involve specific regulatory factors. Promoter motifs associated with some of the groups of coregulated genes were identified. We compare and contrast global regulation of stress genes in fission and budding yeasts and discuss evolutionary implications.
                Bookmark

                Author and article information

                Journal
                FEMS Microbiol Lett
                fml
                Fems Microbiology Letters
                Blackwell Publishing Ltd
                0378-1097
                1574-6968
                January 2011
                : 314
                : 1
                : 1-9
                Affiliations
                [1 ]simpleMax F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna Vienna, Austria
                [2 ]simpleComparative Genomics Group, Bioinformatics and Genomics Programme, Centre for Genomic Regulation Barcelona, Spain
                Author notes
                Correspondence: Christoph Schüller, Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria. Tel.: +43 1 4277 52815;fax: +43 1 4277 9528;e-mail: christoph.schueller@ 123456univie.ac.at
                Article
                10.1111/j.1574-6968.2010.02102.x
                3015064
                20846362
                f9c2aa36-6680-4202-8743-7e719061f7d1
                © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 06 June 2010
                : 18 August 2010
                : 19 September 2010
                Categories
                MiniReviews

                Microbiology & Virology
                fungal pathogen,stress response,apoptosis
                Microbiology & Virology
                fungal pathogen, stress response, apoptosis

                Comments

                Comment on this article