53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dual-task motor performance with a tongue-operated assistive technology compared with hand operations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          To provide an alternative motor modality for control, navigation, and communication in individuals suffering from impairment or disability in hand functions, a Tongue Drive System (TDS) has been developed that allows for real time tracking of tongue motion in an unobtrusive, wireless, and wearable device that utilizes the magnetic field generated by a miniature disk shaped magnetic tracer attached to the tip of the tongue. The purpose of the study was to compare the influence of a concurrent motor or cognitive task on various aspects of simple movement control between hand and tongue using the TDS technology.

          Methods

          Thirteen young able-bodied adults performed rapid and slow goal-directed movements of hand and tongue (with TDS) with and without a concurrent motor (hand or tongue) or cognitive (arithmetic and memory) task. Changes in reaction time, completion time, speed, correctness, accuracy, variability of displacement, and variability of time due to the addition of a concurrent task were compared between hand and tongue.

          Results

          The influence of an additional concurrent task on motor performance was similar between the hand and tongue for slow movement in controlling their displacement. In rapid movement with a concurrent motor task, most aspects of motor performance were degraded in hand, while tongue speed during rapid continuous task was maintained. With a concurrent cognitive task, most aspects of motor performance were degraded in tongue, while hand accuracy during the rapid discrete task and hand speed during the rapid continuous task were maintained.

          Conclusion

          Rapid goal-directed hand and tongue movements were more consistently susceptible to interference from concurrent motor and cognitive tasks, respectively, compared with the other movement.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Contributions of anterior cingulate cortex to behaviour

          Assessments of anterior cingulate cortex in experimental animals and humans have led to unifying theories of its structural organization and contributions to mammalian behaviour. The anterior cingulate cortex forms a large region around the rostrum of the corpus callosum that is termed the anterior executive region. This region has numerous projections into motor systems, however, since these projections originate from different parts of anterior cingulate cortex and because functional studies have shown that it does not have a uniform contribution to brain functions, the anterior executive region is further subdivided into 'affect' and 'cognition' components. The affect division includes areas 25, 33 and rostral area 24, and has extensive connections with the amygdala and periaqueductal grey, and parts of it project to autonomic brainstem motor nuclei. In addition to regulating autonomic and endocrine functions, it is involved in conditioned emotional learning, vocalizations associated with expressing internal states, assessments of motivational content and assigning emotional valence to internal and external stimuli, and maternal-infant interactions. The cognition division includes caudal areas 24' and 32', the cingulate motor areas in the cingulate sulcus and nociceptive cortex. The cingulate motor areas project to the spinal cord and red nucleus and have premotor functions, while the nociceptive area is engaged in both response selection and cognitively demanding information processing. The cingulate epilepsy syndrome provides important support of experimental animal and human functional imaging studies for the role of anterior cingulate cortex in movement, affect and social behaviours. Excessive cingulate activity in cases with seizures confirmed in anterior cingulate cortex with subdural electrode recordings, can impair consciousness, alter affective state and expression, and influence skeletomotor and autonomic activity. Interictally, patients with anterior cingulate cortex epilepsy often display psychopathic or sociopathic behaviours. In other clinical examples of elevated anterior cingulate cortex activity it may contribute to tics, obsessive-compulsive behaviours, and aberrent social behaviour. Conversely, reduced cingulate activity following infarcts or surgery can contribute to behavioural disorders including akinetic mutism, diminished self-awareness and depression, motor neglect and impaired motor initiation, reduced responses to pain, and aberrent social behaviour. The role of anterior cingulate cortex in pain responsiveness is suggested by cingulumotomy results and functional imaging studies during noxious somatic stimulation. The affect division of anterior cingulate cortex modulates autonomic activity and internal emotional responses, while the cognition division is engaged in response selection associated with skeletomotor activity and responses to noxious stimuli. Overall, anterior cingulate cortex appears to play a crucial role in initiation, motivation, and goal-directed behaviours.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The origin of corticospinal projections from the premotor areas in the frontal lobe.

            We determined the origin of corticospinal neurons in the frontal lobe. These neurons were labeled by retrograde transport of tracers after injections into either the dorsolateral funiculus at the second cervical segment or the gray matter of the spinal cord throughout the cervical enlargement. Using retrograde transport of tracer from the arm area of the primary motor cortex, we defined the arm representation in each premotor area in another set of animals. We found that corticospinal projections to cervical segments of the spinal cord originate from the primary motor cortex and from the 6 premotor areas in the frontal lobe. These are the same premotor areas that project directly to the arm area of the primary motor cortex. The premotor areas are located in parts of cytoarchitectonic area 6 on the lateral surface and medial wall of the hemisphere, as well as in subfields of areas 23 and 24 in the cingulate sulcus. The total number of corticospinal neurons in the arm representations of the premotor areas equals or exceeds the total number in the arm representation of the primary motor cortex. The premotor areas collectively comprise more than 60% of the cortical area in the frontal lobe that projects to the spinal cord. Like the primary motor cortex, each of the premotor areas contains local regions that have a high density of corticospinal neurons. These observations indicate that a substantial component of the corticospinal system originates from the premotor areas in the frontal lobe. Each of the premotor areas has direct access to the spinal cord, and as a consequence, each has the potential to influence the generation and control of movement independently of the primary motor cortex. These findings raise serious questions about the utility of viewing the primary motor cortex as the "upper motoneuron" or "final common pathway" for the central control of movement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Motor areas in the frontal lobe of the primate.

              There has been a substantial change in our concepts about the cortical motor areas. It is now clear that the frontal lobe of primates contains at least six premotor areas that project directly to the primary motor cortex (M1). Two premotor areas, the ventral premotor area (PMv) and the dorsal premotor area (PMd), are located on the lateral surface of the hemisphere. Four premotor areas are located on the medial wall of the hemisphere and include the supplementary motor area (SMA) and three cingulate motor areas. Each of these premotor areas has substantial direct projections to the spinal cord. Corticospinal axons from the premotor areas terminate in the intermediate zone of the spinal cord, and some also terminate in the ventral horn around motoneurons. In this respect, the premotor areas are like M1 and appear to have direct connections with spinal motoneurons, particularly those innervating hand muscles. Furthermore, it is possible to evoke movements of the distal and proximal forelimb using intracortical stimulation at relatively low currents in the premotor areas. Thus, the premotor areas appear to have the potential to influence the control of movement not only at the level of M1, but also more directly at the level of the spinal cord. For these reasons, we have suggested that the premotor areas may operate at a hierarchical level comparable to M1. We propose that each premotor area is a functionally distinct efferent system that differentially generates and/or controls specific aspects of motor behavior.
                Bookmark

                Author and article information

                Journal
                J Neuroeng Rehabil
                Journal of NeuroEngineering and Rehabilitation
                BioMed Central
                1743-0003
                2012
                13 January 2012
                : 9
                : 1
                Affiliations
                [1 ]School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
                [2 ]School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, USA
                [3 ]Rehabilitation R&D Center of Excellence, Atlanta VA Medical Center, Decatur, GA, USA
                Article
                1743-0003-9-1
                10.1186/1743-0003-9-1
                3287148
                22244362
                fabf4502-41af-4c39-958d-4fd6dc17f79a
                Copyright ©2012 Johnson et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 June 2011
                : 13 January 2012
                Categories
                Research

                Neurosciences
                finger,assistive device,dual task,motor control
                Neurosciences
                finger, assistive device, dual task, motor control

                Comments

                Comment on this article