33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Enteroviruses: Classification, diseases they cause, and approaches to development of antiviral drugs

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genus Enterovirus combines a portion of small (+)ssRNA-containing viruses and is divided into 10 species of true enteroviruses and three species of rhinoviruses. These viruses are causative agents of the widest spectrum of severe and deadly epidemic diseases of higher vertebrates, including humans. Their ubiquitous distribution and high pathogenici- ty motivate active search to counteract enterovirus infections. There are no sufficiently effective drugs targeted against enteroviral diseases, thus treatment is reduced to supportive and symptomatic measures. This makes it extremely urgent to develop drugs that directly affect enteroviruses and hinder their development and spread in infected organisms. In this review, we cover the classification of enteroviruses, mention the most common enterovirus infections and their clinical man- ifestations, and consider the current state of development of anti-enteroviral drugs. One of the most promising targets for such antiviral drugs is the viral Internal Ribosome Entry Site (IRES). The classification of these elements of the viral mRNA translation system is also examined.

          Related collections

          Most cited references150

          • Record: found
          • Abstract: found
          • Article: not found

          RNA-mediated epigenetic regulation of gene expression.

          Diverse classes of RNA, ranging from small to long non-coding RNAs, have emerged as key regulators of gene expression, genome stability and defence against foreign genetic elements. Small RNAs modify chromatin structure and silence transcription by guiding Argonaute-containing complexes to complementary nascent RNA scaffolds and then mediating the recruitment of histone and DNA methyltransferases. In addition, recent advances suggest that chromatin-associated long non-coding RNA scaffolds also recruit chromatin-modifying complexes independently of small RNAs. These co-transcriptional silencing mechanisms form powerful RNA surveillance systems that detect and silence inappropriate transcription events, and provide a memory of these events via self-reinforcing epigenetic loops.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurologic complications in children with enterovirus 71 infection.

            Enterovirus 71 infection causes hand-foot-and-mouth disease in young children, which is characterized by several days of fever and vomiting, ulcerative lesions in the oral mucosa, and vesicles on the backs of the hands and feet. The initial illness resolves but is sometimes followed by aseptic meningitis, encephalomyelitis, or even acute flaccid paralysis similar to paralytic poliomyelitis. We describe the neurologic complications associated with the enterovirus 71 epidemic that occurred in Taiwan in 1998. At three major hospitals we identified 41 children with culture-confirmed enterovirus 71 infection and acute neurologic manifestations. Magnetic resonance imaging (MRI) was performed in 4 patients with acute flaccid paralysis and 24 with rhombencephalitis. The mean age of the patients was 2.5 years (range, 3 months to 8.2 years). Twenty-eight patients had hand-foot-and-mouth disease (68 percent), and 6 had herpangina (15 percent). The other seven patients had no skin or mucosal lesions. Three neurologic syndromes were identified: aseptic meningitis (in 3 patients); brain-stem encephalitis, or rhombencephalitis (in 37); and acute flaccid paralysis (in 4), which followed rhombencephalitis in 3 patients. In 20 patients with rhombencephalitis, the syndrome was characterized by myoclonic jerks and tremor, ataxia, or both (grade I disease). Ten patients had myoclonus and cranial-nerve involvement (grade II disease). In seven patients the brain-stem infection produced transient myoclonus followed by the rapid onset of respiratory distress, cyanosis, poor peripheral perfusion, shock, coma, loss of the doll's eye reflex, and apnea (grade III disease); five of these patients died within 12 hours after admission. In 17 of the 24 patients with rhombencephalitis who underwent MRI, T2-weighted scans showed high-intensity lesions in the brain stem, most commonly in the pontine tegmentum. At follow-up, two of the patients with acute flaccid paralysis had residual limb weakness, and five of the patients with rhombencephalitis had persistent neurologic deficits, including myoclonus (in one child), cranial-nerve deficits (in two), and ventilator-dependent apnea (in two). In the 1998 enterovirus 71 epidemic in Taiwan, the chief neurologic complication was rhombencephalitis, which had a fatality rate of 14 percent. The most common initial symptoms were myoclonic jerks, and MRI usually showed evidence of brainstem involvement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children.

              Although human rhinoviruses (HRVs) are common causes of respiratory illness, their molecular epidemiology has been poorly investigated. Despite the recent findings of new HRV genotypes, their clinical disease spectrum and phylogenetic positions were not fully understood. In this study, 203 prospectively collected nasopharyngeal aspirates (NPAs), negative for common respiratory viruses (83 were human bocavirus [HBoV] positive and 120 HBoV negative), from hospitalized children during a 1-year period were subjected to reverse transcription-PCR for HRV. HRV was detected in 14 NPAs positive and 12 NPAs negative for HBoV. Upon VP4 gene analysis, 5 of these 26 HRV strains were found to belong to HRV-A while 21 belonged to a genetic clade probably representing a previously undetected HRV species, HRV-C, that is phylogenetically distinct from the two known HRV species, HRV-A and HRV-B. The VP4 sequences of these HRV-C strains were closely related to the newly identified HRV strains from the United States and Australia. Febrile wheeze or asthma was the most common presentation (76%) of HRV-C infection, which peaked in fall and winter. Complete genome sequencing of three HRV-C strains revealed that HRV-C represents an additional HRV species, with features distinct from HRV-A and HRV-B. Analysis of VP1 of HRV-C revealed major deletions in regions important for neutralization in other HRVs, which may be signs of a distinct species, while within-clade amino acid variation in potentially antigenic regions may indicate the existence of different serotypes among HRV-C strains. A newly identified HRV species, HRV-C, is circulating worldwide and is an important cause of febrile wheeze and asthmatic exacerbations in children requiring hospitalization.
                Bookmark

                Author and article information

                Contributors
                katya_nik@vega.protres.ru
                Journal
                Biochemistry (Mosc)
                Biochemistry Mosc
                Biochemistry. Biokhimiia
                Pleiades Publishing (Moscow )
                0006-2979
                1608-3040
                3 January 2018
                2017
                : 82
                : 13
                : 1615-1631
                Affiliations
                ISNI 0000 0001 2192 9124, GRID grid.4886.2, Institute of Protein Research, , Russian Academy of Sciences, ; 142290 Pushchino, Moscow Region, Russia
                Article
                540
                10.1134/S0006297917130041
                7087576
                29523062
                fae785df-bef3-4c39-894c-75c063c12299
                © Pleiades Publishing, Ltd. 2017

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 13 June 2017
                Categories
                Review
                Custom metadata
                © Pleiades Publishing, Ltd. 2017

                ires,enteroviruses,picornaviridae,translation initiation,drug design,taxonomy

                Comments

                Comment on this article