24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel Osteogenic Ti-6Al-4V Device For Restoration Of Dental Function In Patients With Large Bone Deficiencies: Design, Development And Implementation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Custom devices supporting bone regeneration and implant placement are needed for edentulous patients with large mandibular deficiencies where endosteal implantation is not possible. We developed a novel subperiosteal titanium-aluminum-vanadium bone onlay device produced by additive manufacturing (AM) and post-fabrication osteogenic micro-/nano-scale surface texture modification. Human osteoblasts produced osteogenic and angiogenic factors when grown on laser-sintered nano-/micro-textured surfaces compared to smooth surfaces. Surface-processed constructs caused higher bone-to-implant contact, vertical bone growth into disk pores (microCT and histomorphometry), and mechanical pull-out force at 5 and 10 w on rat calvaria compared to non surface-modified constructs, even when pre-treating the bone to stimulate osteogenesis. Surface-modified wrap-implants placed around rabbit tibias osseointegrated by 6 w. Finally, patient-specific constructs designed to support dental implants produced via AM and surface-processing were implanted on edentulous mandibular bone. 3 and 8 month post-operative images showed new bone formation and osseointegration of the device and indicated stability of the dental implants.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of titanium surface topography on bone integration: a systematic review.

          To analyse possible effects of titanium surface topography on bone integration. Our analyses were centred on a PubMed search that identified 1184 publications of assumed relevance; of those, 1064 had to be disregarded because they did not accurately present in vivo data on bone response to surface topography. The remaining 120 papers were read and analysed, after removal of an additional 20 papers that mainly dealt with CaP-coated and Zr implants; 100 papers remained and formed the basis for this paper. The bone response to differently configurated surfaces was mainly evaluated by histomorphometry (bone-to-implant contact), removal torque and pushout/pullout tests. A huge number of the experimental investigations have demonstrated that the bone response was influenced by the implant surface topography; smooth (S(a) 1-2 microm) surfaces showed stronger bone responses than rough (S(a)>2 microm) in some studies. One limitation was that it was difficult to compare many studies because of the varying quality of surface evaluations; a surface termed 'rough' in one study was not uncommonly referred to as 'smooth' in another; many investigators falsely assumed that surface preparation per se identified the roughness of the implant; and many other studies used only qualitative techniques such as SEM. Furthermore, filtering techniques differed or only height parameters (S(a), R(a)) were reported. * Surface topography influences bone response at the micrometre level. * Some indications exist that surface topography influences bone response at the nanometre level. * The majority of published papers present an inadequate surface characterization. * Measurement and evaluation techniques need to be standardized. * Not only height descriptive parameters but also spatial and hybrid ones should be used.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis.

            Bacterial adhesion to intra-oral, hard surfaces is firmly influenced by the surface roughness to these structures. Previous studies showed a remarkable higher subgingival bacterial load on rough surfaces when compared to smooth sites. More recently, the additional effect of a further smoothening of intra-oral hard surfaces on clinical and microbiological parameters was examined in a short-term experiment. The results indicated that a reduction in surface roughness below R(a) = 0.2 microns, the so-called "thresholds R(a)", had no further effect on the quantitative/qualitative microbiological adhesion or colonisation, neither supra- nor subgingivally. This study aims to examine the long-term effects of smoothening intra-oral hard transgingival surfaces. In 6 patients expecting an overdenture in the lower jaw, supported by endosseus titanium implants, 2 different abutments (transmucosal part of the implant): a standard machined titanium (R(a) = 0.2 microns) and one highly polished and made of a ceramic material (R(a) = 0.06 microns) were randomly installed. After 3 months of intra-oral exposure, supra- and subgingival plaque samples from both abutments were compared with each other by means of differential phase-contrast microscopy (DPCM). Clinical periodontal parameters (probing depth, gingival recession, bleeding upon probing and Periotest-value) were recorded around each abutment. After 12 months, the supra- and subgingival samples were additionally cultured in aerobic, CO2-enriched and anaerobic conditions. The same clinical parameters as at the 3-month interval were recorded after 12 months. At 3 months, spirochetes and motile organisms were only detected subgingivally around the titanium abutments. After 12 months, however, both abutment-types harboured equal proportions of spirochetes and motile organisms, both supra- and subgingivally. The microbial culturing (month 12) failed to detect large inter-abutment differences. The differences in number of colony- forming units (aerobic and anaerobic) were within one division of a logarithmic scale. The aerobic culture data showed a higher proportion of Gram-negative organisms in the subgingival flora of the rougher abutments. From the group of potentially "pathogenic" bacteria, only Prevotella intermedia and Fusobacterium nucleatum were detected for anaerobic culturing and again the inter-abutment differences were negligible. Clinically, the smoothest abutment showed a slightly higher increase in probing depth between months 3 and 12, and more bleeding on probing. The present results confirm the findings of our previous short-term study, indicating that a further reduction of the surface roughness, below a certain "threshold R(a)" (0.2 microns), has no major impact on the supra- and subgingival microbial composition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants.

              The use of spinal implants for spine fusion has been steadily increasing to avoid the risks of complications and donor site morbidity involved when using autologous bone. A variety of fusion cages are clinically available, with different shapes and chemical compositions. However, detailed information about their surface properties and the effects of such properties on osteogenesis is lacking in the literature. Here we evaluate the role of surface properties for spinal implant applications, covering some of the key biological processes that occur around an implant and focusing on the role of surface properties, specifically the surface structure, on osseointegration, drawing examples from other implantology fields when required. Our findings revealed that surface properties such as microroughness and nanostructures can directly affect early cell behavior and long-term osseointegration. Microroughness has been well established in the literature to have a beneficial effect on osseointegration of implants. In the case of the role of nanostructures, the number of reports is increasing and most studies reveal a positive effect from the nanostructures alone and a synergistic effect when combined with microrough surfaces. Long-term clinical results are nevertheless necessary to establish the full implications of surface nanomodifications.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                08 February 2016
                2016
                : 6
                : 20493
                Affiliations
                [1 ]Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, VA, U.S.A
                [2 ]Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, GA, U.S.A
                [3 ]Department of Biomedical Engineering, Peking University , Beijing, China
                [4 ]Department of Oral and Maxillofacial Surgery, Tel Aviv University , Tel Aviv, Israel
                [5 ]Tipul Behiuch Private Clinic , Tel Aviv, Israel
                [6 ]Department of Periodontics, University of Texas Health Science Center at San Antonio , San Antonio, TX, U.S.A
                Author notes
                Article
                srep20493
                10.1038/srep20493
                4745084
                26854193
                faf22cc7-f8e5-459e-8a9c-2654f04593a6
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 22 September 2015
                : 05 January 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article