208
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Electrostatics of nanosystems: Application to microtubules and the ribosome

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Evaluation of the electrostatic properties of biomolecules has become a standard practice in molecular biophysics. Foremost among the models used to elucidate the electrostatic potential is the Poisson-Boltzmann equation; however, existing methods for solving this equation have limited the scope of accurate electrostatic calculations to relatively small biomolecular systems. Here we present the application of numerical methods to enable the trivially parallel solution of the Poisson-Boltzmann equation for supramolecular structures that are orders of magnitude larger in size. As a demonstration of this methodology, electrostatic potentials have been calculated for large microtubule and ribosome structures. The results point to the likely role of electrostatics in a variety of activities of these structures.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The structural basis of ribosome activity in peptide bond synthesis.

          Using the atomic structures of the large ribosomal subunit from Haloarcula marismortui and its complexes with two substrate analogs, we establish that the ribosome is a ribozyme and address the catalytic properties of its all-RNA active site. Both substrate analogs are contacted exclusively by conserved ribosomal RNA (rRNA) residues from domain V of 23S rRNA; there are no protein side-chain atoms closer than about 18 angstroms to the peptide bond being synthesized. The mechanism of peptide bond synthesis appears to resemble the reverse of the acylation step in serine proteases, with the base of A2486 (A2451 in Escherichia coli) playing the same general base role as histidine-57 in chymotrypsin. The unusual pK(a) (where K(a) is the acid dissociation constant) required for A2486 to perform this function may derive in part from its hydrogen bonding to G2482 (G2447 in E. coli), which also interacts with a buried phosphate that could stabilize unusual tautomers of these two bases. The polypeptide exit tunnel is largely formed by RNA but has significant contributions from proteins L4, L22, and L39e, and its exit is encircled by proteins L19, L22, L23, L24, L29, and L31e.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Classical electrostatics in biology and chemistry

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The complete atomic structure of the large ribosomal subunit at 2.4 A resolution.

              The large ribosomal subunit catalyzes peptide bond formation and binds initiation, termination, and elongation factors. We have determined the crystal structure of the large ribosomal subunit from Haloarcula marismortui at 2.4 angstrom resolution, and it includes 2833 of the subunit's 3045 nucleotides and 27 of its 31 proteins. The domains of its RNAs all have irregular shapes and fit together in the ribosome like the pieces of a three-dimensional jigsaw puzzle to form a large, monolithic structure. Proteins are abundant everywhere on its surface except in the active site where peptide bond formation occurs and where it contacts the small subunit. Most of the proteins stabilize the structure by interacting with several RNA domains, often using idiosyncratically folded extensions that reach into the subunit's interior.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc. Natl. Acad. Sci. U.S.A.
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 28 2001
                August 21 2001
                August 28 2001
                : 98
                : 18
                : 10037-10041
                Affiliations
                [1 ]Departments of Chemistry and Biochemistry, Mathematics, and Pharmacology, and Howard Hughes Medical Institute, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093; and Department of Biomedical Engineering, Washington University, One Brookings Drive, St. Louis, MO 63130-4899
                Article
                10.1073/pnas.181342398
                56910
                11517324
                fb07f120-2ba5-4783-91bf-fb5db1c10444
                © 2001
                History

                Comments

                Comment on this article