15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Upregulating the Expression of LncRNA ANRIL Promotes Osteogenesis via the miR-7-5p/IGF-1R Axis in the Inflamed Periodontal Ligament Stem Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Long non-coding RNA (lncRNA) antisense non-coding RNA in the INK4 locus (ANRIL) is a base length of about 3.8 kb lncRNA, which plays an important role in several biological functions including cell proliferation, migration, and senescence. This study ascertained the role of lncRNA ANRIL in the senescence and osteogenic differentiation of inflamed periodontal ligament stem cells (iPDLSCs).

          Methods

          Healthy periodontal ligament stem cells (hPDLSCs) and iPDLSCs were isolated from healthy/inflamed periodontal ligament tissues, respectively. The proliferation abilities were determined by CCK-8, EdU assay, and flow cytometry (FCM). The methods of Western blot assay (WB), quantitative real-time polymerase chain reaction (qRT-PCR), alizarin red staining, alkaline phosphatase (ALP) staining, ALP activity detection, and immunofluorescence staining were described to determine the biological influences of lncRNA ANRIL on iPDLSCs. Senescence-associated (SA)-β-galactosidase (gal) staining, Western blot analysis, and qRT-PCR were performed to determine cell senescence. Dual-luciferase reporter assays were conducted to confirm the binding of lncRNA ANRIL and miR-7-5-p, as well as miR-7-5p and insulin-like growth factor receptor (IGF-1R).

          Results

          HPDLSCs and iPDLSCs were isolated and cultured successfully. LncRNA ANRIL and IGF-1R were declined, while miR-7-5p was upregulated in iPDLSCs compared with hPDLSCs. Overexpression of ANRIL enhanced the osteogenic protein expressions of OSX, RUNX2, ALP, and knocked down the aging protein expressions of p16, p21, p53. LncRNA ANRIL could promote the committed differentiation of iPDLSCs by sponging miR-7-5p. Upregulating miR-7-5p inhibited the osteogenic differentiation of iPDLSCs. Further analysis identified IGF-1R as a direct target of miR-7-5p. The direct binding of lncRNA ANRIL and miR-7-5p, miR-7-5p and the 3′-UTR of IGF-1R were verified by dual-luciferase reporter assay. Besides, rescue experiments showed that knockdown of miR-7-5p reversed the inhibitory effect of lncRNA ANRIL deficiency on osteogenesis of iPDLSCs.

          Conclusion

          This study disclosed that lncRNA ANRIL promotes osteogenic differentiation of iPDLSCs by regulating the miR-7-5p/IGF-1R axis.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA

          MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene-expression posttranscriptionally. MiRNA research in allergy is expanding because miRNAs are crucial regulators of gene expression and promising candidates for biomarker development. MiRNA mimics and miRNA inhibitors currently in preclinical development have shown promise as novel therapeutic agents. Multiple technological platforms have been developed for miRNA isolation, miRNA quantitation, miRNA profiling, miRNA target detection, and modulating miRNA levels in vitro and in vivo. Here we will review the major technological platforms with consideration given for the advantages and disadvantages of each platform.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNA control of signal transduction.

            MicroRNAs (miRNAs) are integral elements in the post-transcriptional control of gene expression. After the identification of hundreds of miRNAs, the challenge is now to understand their specific biological function. Signalling pathways are ideal candidates for miRNA-mediated regulation owing to the sharp dose-sensitive nature of their effects. Indeed, emerging evidence suggests that miRNAs affect the responsiveness of cells to signalling molecules such as transforming growth factor-beta, WNT, Notch and epidermal growth factor. As such, miRNAs serve as nodes of signalling networks that ensure homeostasis and regulate cancer, metastasis, fibrosis and stem cell biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mechanisms of Bone Resorption in Periodontitis

              Alveolar bone loss is a hallmark of periodontitis progression and its prevention is a key clinical challenge in periodontal disease treatment. Bone destruction is mediated by the host immune and inflammatory response to the microbial challenge. However, the mechanisms by which the local immune response against periodontopathic bacteria disturbs the homeostatic balance of bone formation and resorption in favour of bone loss remain to be established. The osteoclast, the principal bone resorptive cell, differentiates from monocyte/macrophage precursors under the regulation of the critical cytokines macrophage colony-stimulating factor, RANK ligand, and osteoprotegerin. TNF-α, IL-1, and PGE2 also promote osteoclast activity, particularly in states of inflammatory osteolysis such as those found in periodontitis. The pathogenic processes of destructive inflammatory periodontal diseases are instigated by subgingival plaque microflora and factors such as lipopolysaccharides derived from specific pathogens. These are propagated by host inflammatory and immune cell influences, and the activation of T and B cells initiates the adaptive immune response via regulation of the Th1-Th2-Th17 regulatory axis. In summary, Th1-type T lymphocytes, B cell macrophages, and neutrophils promote bone loss through upregulated production of proinflammatory mediators and activation of the RANK-L expression pathways.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                22 February 2021
                2021
                : 9
                : 604400
                Affiliations
                [1] 1Institute of Stomatology, Nanjing Medical University , Nanjing, China
                [2] 2Key Laboratory of Oral Diseases of Jiangsu Province and Stomatological Institute of Nanjing Medical University , Nanjing, China
                [3] 3Endodontic Department, School of Stomatology, Nanjing Medical University , Nanjing, China
                Author notes

                Edited by: Giovanna Orsini, Marche Polytechnic University, Italy

                Reviewed by: Johannes F. W. Greiner, Bielefeld University, Germany; Chao Lu, Fudan University, China

                *Correspondence: Jinhua Yu, yujinhua@ 123456njmu.edu.cn

                These authors have contributed equally to this work

                This article was submitted to Stem Cell Research, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2021.604400
                7937634
                33692995
                fb2af48f-7d61-46df-aa2d-62f3fd2cc7c5
                Copyright © 2021 Bian, Yu, Li, Zhou, Wu, Ye and Yu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 September 2020
                : 14 January 2021
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 52, Pages: 15, Words: 0
                Categories
                Cell and Developmental Biology
                Original Research

                lncrna anril,inflamed periodontal ligament stem cells,mir-7-5p,igf-1r,differentiation

                Comments

                Comment on this article