45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Dominant Inhibitory Chalcone Synthase Allele C2-Idf (Inhibitor diffuse) From Zea mays (L.) Acts via an Endogenous RNA Silencing Mechanism

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The flavonoid pigment pathway in plants has been used as a model system for studying gene regulatory mechanisms. C2-Idf is a stable dominant mutation of the chalcone synthase gene, c2, which encodes the first dedicated enzyme in this biosynthetic pathway of maize. Homozygous C2-Idf plants show no pigmentation. This allele also inhibits expression of functional C2 alleles in heterozygotes, producing a less pigmented condition instead of the normal deeply pigmented phenotype. To explore the nature of this effect, the C2-Idf allele was cloned. The gene structure of the C2-Idf haplotype differs substantially from that of the normal c2 gene in that three copies are present. Two of these are located in close proximity to each other in a head-to-head orientation and the third is closely linked. Previous experiments showed that the lower level of pigmentation in heterozygotes is correlated with reduced enzyme activity and low steady-state mRNA levels. We found that c2 transcription occurs in nuclei of C2-Idf/C2 heterozygotes, but mRNA does not accumulate, suggesting that the inhibition is mediated by RNA silencing. Infection of C2-Idf/C2 heterozygotes with viruses that carry suppressors of RNA silencing relieved the phenotypic inhibition, restoring pigment production and mRNA levels. Finally, we detected small interfering RNAs (siRNAs) in plants carrying C2-Idf, but not in plants homozygous for the wild-type C2 allele. Together, our results indicate that the inhibitory effect of C2-Idf occurs through RNA silencing.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Argonaute2, a link between genetic and biochemical analyses of RNAi.

          Double-stranded RNA induces potent and specific gene silencing through a process referred to as RNA interference (RNAi) or posttranscriptional gene silencing (PTGS). RNAi is mediated by RNA-induced silencing complex (RISC), a sequence-specific, multicomponent nuclease that destroys messenger RNAs homologous to the silencing trigger. RISC is known to contain short RNAs ( approximately 22 nucleotides) derived from the double-stranded RNA trigger, but the protein components of this activity are unknown. Here, we report the biochemical purification of the RNAi effector nuclease from cultured Drosophila cells. The active fraction contains a ribonucleoprotein complex of approximately 500 kilodaltons. Protein microsequencing reveals that one constituent of this complex is a member of the Argonaute family of proteins, which are essential for gene silencing in Caenorhabditis elegans, Neurospora, and Arabidopsis. This observation begins the process of forging links between genetic analysis of RNAi from diverse organisms and the biochemical model of RNAi that is emerging from Drosophila in vitro systems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nested Retrotransposons in the Intergenic Regions of the Maize Genome

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome.

              Long terminal repeat (LTR) retrotransposons have been shown to make up much of the maize genome. Although these elements are known to be prevalent in plant genomes of a middle-to-large size, little information is available on the relative proportions composed by specific families of elements in a single genome. We sequenced a library of randomly sheared genomic DNA from maize to characterize this genome. BLAST analysis of these sequences demonstrated that the maize genome is composed of diverse sequences that represent numerous families of retrotransposons. The largest families contain the previously described elements Huck, Ji, and Opie. Approximately 5% of the sequences are predicted to encode proteins. The genomic abundance of 16 families of elements was estimated by hybridization to an array of 10,752 maize bacterial artificial chromosome (BAC) clones. Comparisons of the number of elements present on individual BACs indicated that retrotransposons are in general randomly distributed across the maize genome. A second library was constructed that was selected to contain sequences hypomethylated in the maize genome. Sequence analysis of this library indicated that retroelements abundant in the genome are poorly represented in hypomethylated regions. Fifty-six retroelement sequences corresponding to the integrase and reverse transcriptase domains were isolated from approximately 407,000 maize expressed sequence tags (ESTs). Phylogenetic analysis of these and the genomic retroelement sequences indicated that elements most abundant in the genome are less abundant at the transcript level than are more rare retrotransposons. Additional phylogenies also demonstrated that rice and maize retrotransposon families are frequently more closely related to each other than to families within the same species. An analysis of the GC content of the maize genomic library and that of maize ESTs did not support recently published data that the gene space in maize is found within a narrow GC range, but does indicate that genic sequences have a higher GC content than intergenic sequences (52% vs. 47% GC).
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                September 06 2005
                August 2005
                August 2005
                June 14 2005
                : 170
                : 4
                : 1989-2002
                Article
                10.1534/genetics.105.043406
                1449766
                15956664
                fc4bfdcf-f1cb-46da-867a-c3afb7ebcab1
                © 2005
                History

                Comments

                Comment on this article