16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Practical Guide to the Treatment of Dravet Syndrome with Anti-Seizure Medication

      research-article
      1 , 2 , , 1 , 2 , 3
      CNS Drugs
      Springer International Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dravet syndrome is a severe developmental and epileptic encephalopathy characterised by refractory seizures and cognitive dysfunction. The treatment is challenging, not least because the seizures are highly drug resistant, requiring multiple anti-seizure medications (ASMs), while some ASMs can exacerbate seizures. Initial treatments include the broad-spectrum ASMs valproate (VPA), and clobazam (CLB) in some regions; however, they are generally insufficient to control seizures. With this in mind, three adjunct ASMs have been approved specifically for the treatment of seizures in patients with Dravet syndrome: stiripentol (STP) in 2007 in the European Union and 2018 in the USA, cannabidiol (CBD) in 2018/2019 (in combination with CLB in the European Union) and fenfluramine (FFA) in 2020. These “add-on” therapies (mostly to VPA/CLB) are used as escalation therapies, with the choice dependent on availability in different countries, patient characteristics and caregiver preferences. Topiramate is also frequently used, with evidence of efficacy in Dravet syndrome, and there is anecdotal evidence of efficacy with bromide, which is frequently used in Germany and Japan. With a growing treatment landscape for Dravet syndrome, there can be practical challenges for clinicians, particularly with issues associated with polypharmacy. This practical guide provides an overview of these main ASMs including their indications/contraindications, mechanism of action, efficacy, safety and tolerability profile, dosage requirements, and laboratory and clinical parameters to be evaluated. Standard laboratory and clinical parameters include blood counts, liver function tests, serum concentrations of ASMs, monitoring the growth of children, as well as weight loss and acceleration of behavioural problems. Regular cardiac monitoring is also important with FFA as it has previously been associated with cases of cardiac valve disease when used in adults at high doses (up to 120 mg/day) in combination with phentermine as a therapy for obesity. Importantly, no signs of heart valve disease have been documented to date at the low doses used in patients with developmental and epileptic encephalopathies. In addition, potential drug–drug interactions and their consequences are a key consideration in everyday practice. Interactions that potentially require dosage adjustments to alleviate adverse events include the following: STP + CLB resulting in increased plasma concentrations of CLB and its active metabolite norclobazam may increase somnolence, and an interaction with STP and VPA may increase gastrointestinal adverse events. Cannabidiol has a bi-directional interaction with CLB producing an increase in plasma concentrations of 7-OH-CBD and norclobazam resulting in the potential for increased somnolence and sedation. In addition, CBD is associated with elevations of liver transaminases particularly in patients taking concomitant VPA. The interaction between FFA and STP requires a dose reduction of FFA. Furthermore, concomitant administration of VPA with topiramate has been associated with encephalopathy and/or hyperammonaemia. Finally, we briefly describe other ASMs used in Dravet syndrome, and current key clinical trials.

          Graphical abstract

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s40263-022-00898-1.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: found

          Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome

          New England Journal of Medicine, 376(21), 2011-2020
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The core Dravet syndrome phenotype.

            C Dravet (2011)
            Dravet syndrome was described in 1978 by Dravet (1978) under the name of severe myoclonic epilepsy in infancy (SMEI). The characteristics of the syndrome were confirmed and further delineated by other authors over the years. According to the semiologic features, two forms have been individualized: (1) the typical, core, SMEI; and (2) the borderline form, SMEIB, in which the myoclonic component is absent or subtle. Clinical manifestations at the onset, at the steady state, and during the course of the disease are analyzed in detail for the typical Dravet syndrome, and the differential diagnosis is discussed. Onset in the first year of life by febrile or afebrile clonic and tonic-clonic, generalized, and unilateral seizures, often prolonged, in an apparently normal infant is the first symptom, suggesting the diagnosis. Later on, multiple seizure types, mainly myoclonic, atypical absences, and focal seizures appear, as well as a slowing of developmental and cognitive skills, and the appearance of behavioral disorders. Mutation screening for the SCN1A gene confirms the diagnosis in 70-80% of patients. All seizure types are pharmacoresistent, but a trend toward less severe epilepsy and cognitive impairment is usually observed after the age of 5 years. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NaV1.1 channels and epilepsy.

              Voltage-gated sodium channels initiate action potentials in brain neurons, and sodium channel blockers are used in therapy of epilepsy. Mutations in sodium channels are responsible for genetic epilepsy syndromes with a wide range of severity, and the NaV1.1 channel encoded by the SCN1A gene is the most frequent target of mutations. Complete loss-of-function mutations in NaV1.1 cause severe myoclonic epilepsy of infancy (SMEI or Dravet's Syndrome), which includes severe, intractable epilepsy and comorbidities of ataxia and cognitive impairment. Mice with loss-of-function mutations in NaV1.1 channels have severely impaired sodium currents and action potential firing in hippocampal GABAergic inhibitory neurons without detectable effect on the excitatory pyramidal neurons, which would cause hyperexcitability and contribute to seizures in SMEI. Similarly, the sodium currents and action potential firing are also impaired in the GABAergic Purkinje neurons of the cerebellum, which is likely to contribute to ataxia. The imbalance between excitatory and inhibitory transmission in these mice can be partially corrected by compensatory loss-of-function mutations of NaV1.6 channels, and thermally induced seizures in these mice can be prevented by drug combinations that enhance GABAergic neurotransmission. Generalized epilepsy with febrile seizures plus (GEFS+) is caused by missense mutations in NaV1.1 channels, which have variable biophysical effects on sodium channels expressed in non-neuronal cells, but may primarily cause loss of function when expressed in mice. Familial febrile seizures is caused by mild loss-of-function mutations in NaV1.1 channels; mutations in these channels are implicated in febrile seizures associated with vaccination; and impaired alternative splicing of the mRNA encoding these channels may also predispose some children to febrile seizures. We propose a unified loss-of-function hypothesis for the spectrum of epilepsy syndromes caused by genetic changes in NaV1.1 channels, in which mild impairment predisposes to febrile seizures, intermediate impairment leads to GEFS+ epilepsy, and severe or complete loss of function leads to the intractable seizures and comorbidities of SMEI.
                Bookmark

                Author and article information

                Contributors
                strzelczyk@med.uni-frankfurt.de
                Journal
                CNS Drugs
                CNS Drugs
                CNS Drugs
                Springer International Publishing (Cham )
                1172-7047
                1179-1934
                14 February 2022
                14 February 2022
                2022
                : 36
                : 3
                : 217-237
                Affiliations
                [1 ]GRID grid.7839.5, ISNI 0000 0004 1936 9721, Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, , Goethe-University Frankfurt, ; Schleusenweg 2-16 (Haus 95), 60528 Frankfurt am Main, Germany
                [2 ]GRID grid.7839.5, ISNI 0000 0004 1936 9721, LOEWE Center for Personalized and Translational Epilepsy Research (CePTER), , Goethe-University Frankfurt, ; Frankfurt am Main, Germany
                [3 ]GRID grid.7839.5, ISNI 0000 0004 1936 9721, Department of Neuropediatrics, , Goethe-University Frankfurt, ; Frankfurt am Main, Germany
                Author information
                http://orcid.org/0000-0001-6288-9915
                http://orcid.org/0000-0003-1545-7364
                Article
                898
                10.1007/s40263-022-00898-1
                8927048
                35156171
                fcbd86de-21ed-40ac-98a9-b4ccef61afe7
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 9 January 2022
                Funding
                Funded by: Johann Wolfgang Goethe-Universität, Frankfurt am Main (1022)
                Categories
                Therapy in Practice
                Custom metadata
                © Springer Nature Switzerland AG 2022

                Comments

                Comment on this article