26
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multifaceted Functions of CH25H and 25HC to Modulate the Lipid Metabolism, Immune Responses, and Broadly Antiviral Activities

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the frequent outbreaks of emerging infectious diseases in recent years, an effective broad-spectrum antiviral drug is becoming an urgent need for global public health. Cholesterol-25-hydroxylase (CH25H) and its enzymatic products 25-hydroxycholesterol (25HC), a well-known oxysterol that regulates lipid metabolism, have been reported to play multiple functions in modulating cholesterol homeostasis, inflammation, and immune responses. CH25H and 25HC were recently identified as exerting broadly antiviral activities, including upon a variety of highly pathogenic viruses such as human immunodeficiency virus (HIV), Ebola virus (EBOV), Nipah virus (NiV), Rift Valley fever virus (RVFV), and Zika virus (ZIKV). The underlying mechanisms for its antiviral activities are being extensively investigated but have not yet been fully clarified. In this study, we summarized the current findings on how CH25H and 25HC play multiple roles to modulate cholesterol metabolism, inflammation, immunity, and antiviral infections. Overall, 25HC should be further studied as a potential therapeutic agent to control emerging infectious diseases in the future.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study

          Summary Background In December, 2019, a pneumonia associated with the 2019 novel coronavirus (2019-nCoV) emerged in Wuhan, China. We aimed to further clarify the epidemiological and clinical characteristics of 2019-nCoV pneumonia. Methods In this retrospective, single-centre study, we included all confirmed cases of 2019-nCoV in Wuhan Jinyintan Hospital from Jan 1 to Jan 20, 2020. Cases were confirmed by real-time RT-PCR and were analysed for epidemiological, demographic, clinical, and radiological features and laboratory data. Outcomes were followed up until Jan 25, 2020. Findings Of the 99 patients with 2019-nCoV pneumonia, 49 (49%) had a history of exposure to the Huanan seafood market. The average age of the patients was 55·5 years (SD 13·1), including 67 men and 32 women. 2019-nCoV was detected in all patients by real-time RT-PCR. 50 (51%) patients had chronic diseases. Patients had clinical manifestations of fever (82 [83%] patients), cough (81 [82%] patients), shortness of breath (31 [31%] patients), muscle ache (11 [11%] patients), confusion (nine [9%] patients), headache (eight [8%] patients), sore throat (five [5%] patients), rhinorrhoea (four [4%] patients), chest pain (two [2%] patients), diarrhoea (two [2%] patients), and nausea and vomiting (one [1%] patient). According to imaging examination, 74 (75%) patients showed bilateral pneumonia, 14 (14%) patients showed multiple mottling and ground-glass opacity, and one (1%) patient had pneumothorax. 17 (17%) patients developed acute respiratory distress syndrome and, among them, 11 (11%) patients worsened in a short period of time and died of multiple organ failure. Interpretation The 2019-nCoV infection was of clustering onset, is more likely to affect older males with comorbidities, and can result in severe and even fatal respiratory diseases such as acute respiratory distress syndrome. In general, characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia. Further investigation is needed to explore the applicability of the MuLBSTA score in predicting the risk of mortality in 2019-nCoV infection. Funding National Key R&D Program of China.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Hypothesis for potential pathogenesis of SARS-CoV-2 infection–a review of immune changes in patients with viral pneumonia

            ABSTRACT Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with droplets and contact as the main means of transmission. Since the first case appeared in Wuhan, China, in December 2019, the outbreak has gradually spread nationwide. Up to now, according to official data released by the Chinese health commission, the number of newly diagnosed patients has been declining, and the epidemic is gradually being controlled. Although most patients have mild symptoms and good prognosis after infection, some patients developed severe and die from multiple organ complications. The pathogenesis of SARS-CoV-2 infection in humans remains unclear. Immune function is a strong defense against invasive pathogens and there is currently no specific antiviral drug against the virus. This article reviews the immunological changes of coronaviruses like SARS, MERS and other viral pneumonia similar to SARS-CoV-2. Combined with the published literature, the potential pathogenesis of COVID-19 is inferred, and the treatment recommendations for giving high-doses intravenous immunoglobulin and low-molecular-weight heparin anticoagulant therapy to severe type patients are proposed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipid landscapes and pipelines in membrane homeostasis.

              The lipid composition of cellular organelles is tailored to suit their specialized tasks. A fundamental transition in the lipid landscape divides the secretory pathway in early and late membrane territories, allowing an adaptation from biogenic to barrier functions. Defending the contrasting features of these territories against erosion by vesicular traffic poses a major logistical problem. To this end, cells evolved a network of lipid composition sensors and pipelines along which lipids are moved by non-vesicular mechanisms. We review recent insights into the molecular basis of this regulatory network and consider examples in which malfunction of its components leads to system failure and disease.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                06 July 2020
                July 2020
                : 12
                : 7
                : 727
                Affiliations
                [1 ]School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 514400, China; zhaoj47@ 123456mail2.sysu.edu.cn (J.Z.); chenjsh59@ 123456mail2.sysu.edu.cn (J.C.); limch7@ 123456mail2.sysu.edu.cn (M.L.); chenmsh28@ 123456mail2.sysu.edu.cn (M.C.)
                [2 ]Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 514400, China
                Author notes
                [* ]Correspondence: suncaijun@ 123456mail.sysu.edu.cn ; Tel.: +86-20-83226383
                Author information
                https://orcid.org/0000-0002-2000-7053
                Article
                viruses-12-00727
                10.3390/v12070727
                7411728
                32640529
                fce1a85b-d6e6-4965-a8fa-1fb71443466f
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 June 2020
                : 03 July 2020
                Categories
                Review

                Microbiology & Virology
                ch25h,25-hydroxycholesterol (25hc),lipid metabolism,broadly antiviral drug,emerging infectious diseases

                Comments

                Comment on this article