30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Candidate genes linking maternal nutrient exposure to offspring health via DNA methylation: a review of existing evidence in humans with specific focus on one-carbon metabolism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mounting evidence suggests that nutritional exposures during pregnancy influence the fetal epigenome, and that these epigenetic changes can persist postnatally, with implications for disease risk across the life course.

          Methods

          We review human intergenerational studies using a three-part search strategy. Search 1 investigates associations between preconceptional or pregnancy nutritional exposures, focusing on one-carbon metabolism, and offspring DNA methylation. Search 2 considers associations between offspring DNA methylation at genes found in the first search and growth-related, cardiometabolic and cognitive outcomes. Search 3 isolates those studies explicitly linking maternal nutritional exposure to offspring phenotype via DNA methylation. Finally, we compile all candidate genes and regions of interest identified in the searches and describe their genomic locations, annotations and coverage on the Illumina Infinium Methylation beadchip arrays.

          Results

          We summarize findings from the 34 studies found in the first search, the 31 studies found in the second search and the eight studies found in the third search. We provide details of all regions of interest within 45 genes captured by this review.

          Conclusions

          Many studies have investigated imprinted genes as priority loci, but with the adoption of microarray-based platforms other candidate genes and gene classes are now emerging. Despite a wealth of information, the current literature is characterized by heterogeneous exposures and outcomes, and mostly comprise observational associations that are frequently underpowered. The synthesis of current knowledge provided by this review identifies research needs on the pathway to developing possible early life interventions to optimize lifelong health.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          High density DNA methylation array with single CpG site resolution.

          We have developed a new generation of genome-wide DNA methylation BeadChip which allows high-throughput methylation profiling of the human genome. The new high density BeadChip can assay over 480K CpG sites and analyze twelve samples in parallel. The innovative content includes coverage of 99% of RefSeq genes with multiple probes per gene, 96% of CpG islands from the UCSC database, CpG island shores and additional content selected from whole-genome bisulfite sequencing data and input from DNA methylation experts. The well-characterized Infinium® Assay is used for analysis of CpG methylation using bisulfite-converted genomic DNA. We applied this technology to analyze DNA methylation in normal and tumor DNA samples and compared results with whole-genome bisulfite sequencing (WGBS) data obtained for the same samples. Highly comparable DNA methylation profiles were generated by the array and sequencing methods (average R2 of 0.95). The ability to determine genome-wide methylation patterns will rapidly advance methylation research. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An integrative genomics approach to infer causal associations between gene expression and disease.

            A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integrates DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expression traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene-perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Epigenome-Wide Scans Identify Differentially Methylated Regions for Age and Age-Related Phenotypes in a Healthy Ageing Population

              Introduction DNA methylation is an epigenetic mechanism that plays an important role in gene expression regulation, development, and disease. Increasing evidence points to the distinct contributions of genetic [1], [2], [3], [4], [5], environmental [6], [7], [8], and stochastic factors to DNA methylation levels at individual genomic regions. In addition, DNA methylation patterns at specific CpG-sites can also vary over time within an individual [9], [10] and correspondingly, age-related methylation changes have been identified in multiple tissues and organisms [11], [12], [13], [14], [15]. Although age-related changes in methylation have been implicated in healthy ageing and longevity, the causes and functional consequences of these remain unclear. Ageing is a complex process, which represents the progression of multiple degenerative processes within an individual. Studies in different organisms have identified many factors that contribute to lifespan and the rate of healthy ageing within an individual. These include components of biological mechanisms involved in cellular senescence, oxidative stress, DNA repair, protein glycation, and others (see [16]). Taking these into account, the concept of biological age has been proposed as a better predictor of lifespan and functional capacity than chronological age alone. Previous studies have proposed that certain traits can be used as measures of biological age [17] and have put forward a stringent definition of an ageing biomarker (see [18]). Here, we examined age-related phenotypes that have previously been considered biomarkers of ageing (see [19]), specifically white cell telomere length, blood pressure, lung function, grip strength, bone mineral density, parental longevity, parental age at reproduction, and serum levels of 5-dehydroepiandrosterone (DHEAS), cholesterol, albumin, and creatinine. Epigenetic studies of age-related phenotypes can help identify molecular changes that associate with the ageing process. Such changes may include both biological markers of accumulated stochastic damage in the organism, as well as specific susceptibility factors that may play a regulatory role. We explored the hypothesis that epigenetic changes contribute to the rate of ageing and potential longevity in a sample of 172 middle-aged female twins, where methylation profiles and age-DMRs were previously characterized in 93 individuals from the sample [14]. We compared DNA methylation patterns with chronological age in the sample of 172 individuals and related epigenetic variation to age-related phenotypes that have previously been used as biomarkers of ageing. We identified phenotype-associated DNA methylation changes and combined genetic, epigenetic, expression, and phenotype data to help understand the underlying mechanism of association between epigenetic variation, chronological age, and ageing-related traits. Results DNA methylation patterns in twins associate with genetic variants We characterized DNA methylation patterns in a sample of 172 female twins at 26,690 promoter CpG-sites that map uniquely across the genome. We observed that the majority of autosomal CpG-sites were un-methylated (beta 5% and an Impute info value of >0.8. Altogether, there were 2,054,344 directly genotyped and imputed autosomal SNPs used in the QTL analyses. Gene expression data Gene expression estimates and eQTLs from lymphoblastoid cell lines (LCLs) in the samples were obtained for 168 individuals in the study [21]. Gene expression levels were measured using the Illumina expression array HumanHT-12 version 3 as previously described [21]. Each sample had three technical replicates and log2 - transformed expression signals were quantile normalized first across the 3 replicates of each individual, followed by quantile normalization across all individuals [21]. We assigned methylation and expression probes to the gene with the nearest transcription start site using Refseq gene annotations. For each gene we obtained the mean methylation (or gene expression) estimate, by averaging values over multiple methylation (or gene expression) probes if more than one probe was assigned to that gene. There were altogether 435 genes nearest to the 490 age DMRs, of which 348 had transcription start sites within 2 kb of the methylation CpG-sites and for which we also had whole blood methylation data and LCLs gene expression data in 168 individuals. Linear mixed effects models and Spearman rank correlations were used to compare methylation and expression data per gene. Methylation QTL analyses We tested for methylation QTLs at 24,522 autosomal probes, which had at least one SNP within 50 kb of the probe that passed genotype QC criteria. We fitted a linear mixed-effects model, regressing the methylation levels at each probe on fixed-effect terms including genotype, methylation chip, and sample order on the methylation chip, and random-effect terms denoting family structure and zygosity. Prior to these analyses, the methylation values at each CpG-site were normalized to N(0,1). Results from meQTL analyses are presented at a false discovery rate (FDR) of 5%, estimated by permutation. Here, we permuted the methylation data at the 24,522 autosomal probes, performed cis association analyses on the permuted and normalized methylation data, and repeated this procedure for 10 replicates selecting the most associated SNP per probe per replicate. FDR was calculated as the fraction of significant hits in the permuted data compared to the observed data at each p-value threshold. DMR analyses Linear mixed effects models were used to assess evidence for DMRs. In the a-DMR analyses we regressed the raw methylation levels at each probe on fixed-effect terms including age, methylation chip, and sample order on the methylation chip, and random-effect terms denoting family structure and zygosity. To assess the significance of the a-DMRs we compared this model to a null model, which excluded age from the fixed-effects terms. In the ap-DMR analyses we regressed the raw methylation levels at each probe on fixed-effect terms including phenotype, methylation chip, and sample order on chip, and random-effect for family and zygosity, and compared the fit of this model to a null model which excluded the phenotype. We also performed the ap-DMR analyses by including age as a fixed effect covariate in both the null and alternative models. We also repeated both the a-DMR and ap-DMR analyses using normalized methylation levels (to N(0,1)) and observed that the reported DMRs were top-ranked in the normalized analyses. To assess genome-wide significance we performed 100 permutations and estimated FDR by calculating the fraction of significant hits in the permuted data compared to the observed data at a specific P-value threshold. Monozygotic twin DMR effects were calculated in the set of 21 MZ twin pairs where both twins were assayed within the same batch of methylation arrays. We estimated MZ-DMRs for 12 phenotypes where data were available in at least 12 MZ pairs. For each phenotype of interest we fitted a linear model comparing phenotype within-pair differences to methylation within-pair differences and reported the P-values obtained from the F-statistics from the overall regression. For the age-corrected analyses we fitted the regression including age as a covariate and compared the results to a null model, which included phenotype differences and age alone. We performed 100 replicates to estimate FDR 5% significant results as described above. At the FDR 5% significance threshold (nominal P = 2.03×10−6), we estimated 35% power to detect the observed correlation (Pearson correlation = 0.83) between methylation MZ-differences at cg01136458 in CSMD1 (mean MZ-beta-difference = 5%) and LDL MZ-differences (mean MZ-LDL-difference = 0.73 SD) in 20 MZ pairs. Age DMR replication The replication sample comprised 44 MZ twins discordant for psychosis, that were profiled on the Illumina 27K array as previously described [27]. The sample consisted of younger adults (age range 20–61, median age 28), including both female and male twin pairs. We compared methylation against age at the 490 a-DMRs both in the entire set of 44 twins and in the set of 22 unaffected unrelated individuals. In the set of 44 twins we fitted linear mixed effect models, regressing the normalized beta values per probe (normalized to N(0,1)) against methylation chip, sample order on the chip, sex, and age as fixed effects, and family as random effect. In the set of 22 unaffected unrelated individuals comprising the control twin from each pair we calculated Spearman rank correlation coefficients on the untransformed methylation beta values against age. Genome-wide association scans Genome-wide association scans were performed using linear mixed effects models for 12 phenotypes including telomere length, systolic blood pressure (SBP), diastolic blood pressure (DBP), FEV1 and FVC to examine lung function, grip strength, bone mineral density (BMD), serum levels of DHEAS, serum total cholesterol levels, serum high density cholesterol levels (HDL), calculated levels of serum low density cholesterol (LDL), serum albumin levels, and serum creatinine levels. Linear models were fit as described in the meQTL analyses section substituting phenotype for methylation, using an additive model. SNPs with evidence for association that surpassed P = 0.001, were considered in the overlap across cis-meQTL, genotype-phenotype, and DMR findings. Functional characterization of DMRs The 26,690 methylation probes were assigned to CpG islands according to previous definitions [54], resulting in 11,299 CpG sites that were in CpG islands and 15,391 that were outside of CpG islands. Histone modification ChIP-seq data were obtained from the Encode project from one CEPH HapMap LCL (GM12878) in the UCSC genome browser. Peaks in the genome-wide read-depth distribution from ChIP-seq histone modifications H3K9ac, H3K27ac, H3K27me3, H3K4me1, H3K4me2, and H3K4me3 were obtained as previously described (see [1]). Enrichment a-DMR estimates were calculated as the proportion of a-DMRs in each functional category (CpG islands or histone peaks) over the proportion of 26,690 probe in that functional category. Enrichment 95% confidence intervals were estimated using bootstrap percentile intervals of 1,000 re-samplings of the a-DMR data per annotation category. Gene ontology term enrichment analysis was performed using the GOrilla tool for identifying enriched GO terms in the ranked list of a-DMR genes [31], using Refseq gene annotations in the entire set of 26,690 probes as background. Supporting Information Figure S1 Summary characteristics of DNA methylation patterns in 172 female twins. Distribution of methylation scores (beta) in (A) autosomal and (B) X-chromosomal probes in all individuals. (PDF) Click here for additional data file. Figure S2 Distribution of intra-class correlation coefficients (ICC) in twins. Density plots of ICC in MZ twins (red) and DZ twins (blue) for two batches of methylation data (batch 1 consists of 93 twins (left) and batch 2 consists of 79 twins (right)). The mean MZ-ICCs and DZ-ICCs were estimated as 0.257 and 0.168 in batch 1 (MZ-ICC vs DZ-ICC P<2×10−16), and as 0.3557 and 0.261 in batch 2 (MZ-ICC vs DZ-ICC P<2×10−16). The corresponding methylation probe heritabilities were calculated as 2(ICC_MZ - ICC_DZ) and the genome-wide estimates were 0.176 (95%CI:0.168–0.185) and 0.188 (95%CI:0.180–0.196) for the data in batch 1 (left) and batch 2 (right), respectively. (PDF) Click here for additional data file. Figure S3 Correlation across age-related phenotypes. Below diagonal plots represent each pair of phenotypes and the corresponding rank correlation coefficient is shown above the diagonal. (PDF) Click here for additional data file. Figure S4 EWAS results for age-related phenotypes. FDR 5% ap-DMRs were obtained for (A) LDL, (B) lung function (FVC), and (C) maternal longevity (MLONG) with (green) and without (blue) age-correction. Red dashed lines correspond to age-corrected (A) and non-age-corrected (B,C) analysis FDR 5% levels. (PDF) Click here for additional data file. Figure S5 Lack of enrichment of age-related phenotype DMR association in the set of age DMRs. (PDF) Click here for additional data file. Figure S6 Evidence for co-methylation. Spearman correlation in methylation levels between all pair-wise CpG-sites (black) and between a-DMR CpG-sites (red) in the sample of 172 related individuals (solid line) and a subset of 96 unrelated individuals (dotted line). (PDF) Click here for additional data file. Table S1 List of 490 a-DMRs. (XLS) Click here for additional data file. Table S2 Descriptive statistics of the age-related phenotypes. (XLS) Click here for additional data file. Table S3 List of 19 a-DMRs associated with proportion of lymphocytes. (XLS) Click here for additional data file. Table S4 Overlap across genotype-methylation (cis-meQTLs), methylation-phenotype (ap-DMRs), and genotype-phenotype (GWAS) association results. (XLS) Click here for additional data file. Table S5 JASPAR motif search results in the set of a-DMR genes. Results are shown at P = 0.05 threshold. (XLS) Click here for additional data file. Table S6 Gene Ontology term enrichment results in the set of a-DMR genes. GO term enrichment in a-DMR genes was assessed relative to the background set of 14,344 genes that map nearest to the 26,690 probes tested. Results are shown at P = 1e-6 for biological processes and molecular functions. (XLS) Click here for additional data file.
                Bookmark

                Author and article information

                Journal
                Int J Epidemiol
                Int J Epidemiol
                ije
                International Journal of Epidemiology
                Oxford University Press
                0300-5771
                1464-3685
                December 2018
                17 August 2018
                17 August 2018
                : 47
                : 6
                : 1910-1937
                Affiliations
                [1 ]MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, London, UK
                [2 ]Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
                [3 ]MRC Life course Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
                [4 ]School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
                [5 ]Research Centre for Biological Sciences, Institute of Developmental Sciences, University of Southampton, Southampton, UK
                Author notes
                Corresponding author. Genomic Research on Complex diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India. E-mail: chandakgrc@ 123456ccmb.res.in

                Joint Philip James, Sara Sajjadi and Ashutosh Singh Tomar authors.

                Joint Karen Lillycrop, Matt Silver and Giriraj R Chandak authors.

                Author information
                http://orcid.org/0000-0001-5448-8193
                Article
                dyy153
                10.1093/ije/dyy153
                6280938
                30137462
                fce32b07-2da2-4d20-ba58-359d0a001d13
                © The Author(s) 2018. Published by Oxford University Press on behalf of the International Epidemiological Association.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 04 July 2018
                Page count
                Pages: 28
                Funding
                Funded by: Newton Fund initiative
                Funded by: Medical Research Council 10.13039/501100000265
                Award ID: MR/N006208/1
                Funded by: Department for International Development 10.13039/501100000278
                Funded by: Department of Biotechnology, Ministry of Science and Technology
                Award ID: BT/IN/DBT-MRC/
                Award ID: DFID/24/GRC/2015–16
                Categories
                Diet

                Public health
                epigenetics,dna methylation,fetal programming,developmental origins of health and disease,one-carbon metabolism,candidate genes,metastable epialleles,cognitive development,cardiometabolic outcomes,growth

                Comments

                Comment on this article