31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroinvasion of α-Synuclein Prionoids after Intraperitoneal and Intraglossal Inoculation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          α-Synuclein is a soluble, cellular protein that in a number of neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, forms pathological deposits of protein aggregates. Because misfolded α-synuclein has some characteristics that resemble those of prions, we investigated its potential to induce disease after intraperitoneal or intraglossal challenge injection into bigenic Tg(M83 +/−: Gfap-luc +/−) mice, which express the A53T mutant of human α-synuclein and firefly luciferase. After a single intraperitoneal injection with α-synuclein fibrils, four of five mice developed paralysis and α-synuclein pathology in the central nervous system, with a median incubation time of 229 ± 17 days. Diseased mice accumulated aggregates of Sarkosyl-insoluble and phosphorylated α-synuclein in the brain and spinal cord, which colocalized with ubiquitin and p62 and were accompanied by gliosis. In contrast, only one of five mice developed α-synuclein pathology in the central nervous system after intraglossal injection with α-synuclein fibrils, after 285 days. These findings are novel and important because they show that, similar to prions, α-synuclein prionoids can neuroinvade the central nervous system after intraperitoneal or intraglossal injection and can cause neuropathology and disease.

          IMPORTANCE Synucleinopathies are neurodegenerative diseases that are characterized by the pathological presence of aggregated α-synuclein in cells of the nervous system. Previous studies have shown that α-synuclein aggregates made of recombinant protein or derived from brains of patients can spread in the central nervous system in a spatiotemporal manner when inoculated into the brains of animals and can induce pathology and neurologic disease, suggesting that misfolded α-synuclein can behave similarly to prions. Here we show that α-synuclein inoculation into the peritoneal cavity or the tongue in mice overexpressing α-synuclein causes neurodegeneration after neuroinvasion from the periphery, which further corroborates the prionoid character of misfolded α-synuclein.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          alpha-Synuclein is phosphorylated in synucleinopathy lesions.

          The deposition of the abundant presynaptic brain protein alpha-synuclein as fibrillary aggregates in neurons or glial cells is a hallmark lesion in a subset of neurodegenerative disorders. These disorders include Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy, collectively referred to as synucleinopathies. Importantly, the identification of missense mutations in the alpha-synuclein gene in some pedigrees of familial PD has strongly implicated alpha-synuclein in the pathogenesis of PD and other synucleinopathies. However, specific post-translational modifications that underlie the aggregation of alpha-synuclein in affected brains have not, as yet, been identified. Here, we show by mass spectrometry analysis and studies with an antibody that specifically recognizes phospho-Ser 129 of alpha-synuclein, that this residue is selectively and extensively phosphorylated in synucleinopathy lesions. Furthermore, phosphorylation of alpha-synuclein at Ser 129 promoted fibril formation in vitro. These results highlight the importance of phosphorylation of filamentous proteins in the pathogenesis of neurodegenerative disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies.

            Lewy bodies and Lewy neurites are the defining neuropathological characteristics of Parkinson's disease and dementia with Lewy bodies. They are made of abnormal filamentous assemblies of unknown composition. We show here that Lewy bodies and Lewy neurites from Parkinson's disease and dementia with Lewy bodies are stained strongly by antibodies directed against amino-terminal and carboxyl-terminal sequences of alpha-synuclein, showing the presence of full-length or close to full-length alpha-synuclein. The number of alpha-synuclein-stained structures exceeded that immunoreactive for ubiquitin, which is currently the most sensitive marker of Lewy bodies and Lewy neurites. Staining for alpha-synuclein thus will replace staining for ubiquitin as the preferred method for detecting Lewy bodies and Lewy neurites. We have isolated Lewy body filaments by a method used for the extraction of paired helical filaments from Alzheimer's disease brain. By immunoelectron microscopy, extracted filaments were labeled strongly by anti-alpha-synuclein antibodies. The morphologies of the 5- to 10-nm filaments and their staining characteristics suggest that extended alpha-synuclein molecules run parallel to the filament axis and that the filaments are polar structures. These findings indicate that alpha-synuclein forms the major filamentous component of Lewy bodies and Lewy neurites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease.

              Two mutations in the gene encoding alpha-synuclein have been linked to early-onset Parkinson's disease (PD). alpha-Synuclein is a component of Lewy bodies, the fibrous cytoplasmic inclusions characteristic of nigral dopaminergic neurons in the PD brain. This connection between genetics and pathology suggests that the alpha-synuclein mutations may promote PD pathogenesis by accelerating Lewy body formation. To test this, we studied alpha-synuclein folding and aggregation in vitro, in the absence of other Lewy body-associated molecules. We demonstrate here that both mutant forms of alpha-synuclein (A53T and A30P) are, like wild-type alpha-synuclein (WT), disordered in dilute solution. However, at higher concentrations, Lewy body-like fibrils and discrete spherical assemblies are formed; most rapidly by A53T. Thus, mutation-induced acceleration of alpha-synuclein fibril formation may contribute to the early onset of familial PD.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                J Virol
                J. Virol
                jvi
                jvi
                JVI
                Journal of Virology
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                0022-538X
                1098-5514
                3 August 2016
                29 September 2016
                15 October 2016
                29 September 2016
                : 90
                : 20
                : 9182-9193
                Affiliations
                [a ]German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
                [b ]Centre for Prions and Protein Folding Diseases & Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
                Rocky Mountain Laboratories
                Author notes
                Address correspondence to Gültekin Tamgüney, erdem@ 123456dzne.de .
                [*]

                Present address: Maria C. Garza, Center for Encephalopathies and Emerging Transmissible Diseases, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain.

                Citation Breid S, Bernis ME, Babila JT, Garza MC, Wille H, Tamgüney G. 2016. Neuroinvasion of α-synuclein prionoids after intraperitoneal and intraglossal inoculation. J Virol 90:9182–9193. doi: 10.1128/JVI.01399-16.

                Author information
                http://orcid.org/0000-0001-5102-8706
                http://orcid.org/0000-0002-6933-5154
                Article
                01399-16
                10.1128/JVI.01399-16
                5044858
                27489279
                fd211a4e-030c-4686-b2f9-5110400f6fd3
                Copyright © 2016 Breid et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 14 July 2016
                : 25 July 2016
                Page count
                Figures: 8, Tables: 2, Equations: 0, References: 53, Pages: 12, Words: 8175
                Categories
                Prions

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article