23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Medroxyprogesterone Acetate Decreases Th1, Th17, and Increases Th22 Responses via AHR Signaling Which Could Affect Susceptibility to Infections and Inflammatory Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A synthetic progestin, medroxyprogesterone acetate (MPA), was used in a novel study to determine progestin effects on human purified macrophages and Th1, Th2, Th17, Th22 cells. MPA concentrations were equivalent to those in the serum of women after 6 and 9 months of progestin use. MPA has no effect on the proliferation of PBMCs and CD4+ T cell clones induced by immobilized anti-CD3 antibodies or by antigen (streptokinase). However, MPA decreases production and mRNA expression of IL-5, IL-13, IFN-γ, T-bet, RORC, and IL-17A but increases production and mRNA expression of IL-22 by CD4+ Th22 cell clones and decreases IL-22 production by Th17 cells. MPA inhibits RORC, but not T-bet and AHR, by Th17 cells but increases AHR mRNA and T-bet expression of established CD4+ Th22 cell clones. This suggests that MPA, at concentrations equivalent to those found in the serum of women after treatment for contraception and hormone replacement therapy, can directly inhibit Th1 responses (against intracellular bacteria and viruses), Th17 (against extracellular bacteria and fungi), Th2 (against parasites) but MPA therapy increases IL-22 produced by Th22 cells mediated by an increased expression of AHR and T-bet controlling inflammation. MPA could be responsible for the tissue damage limited by IL-22 in absence of IL-17A.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon?

          Pregnant females are susceptible to intracellular pathogens and are biased towards humoral rather than cell-mediated immunity. Since TH1 cytokines compromise pregnancy and TH2 cytokines are produced at the maternal-fetal interface, we hypothesize that these TH2 cytokines inhibit TH1 responses, improving fetal survival but impairing responses against some pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells.

            Interleukin 22 (IL-22) is a cytokine produced by the T(H)-17 lineage of helper T cells and NK-22 subset of natural killer cells that acts on epithelial cells and keratinocytes and has been linked to skin homeostasis and inflammation. Here we characterize a population of human skin-homing memory CD4(+) T cells that expressed the chemokine receptors CCR10, CCR6 and CCR4 and produced IL-22 but neither IL-17 nor interferon-gamma (IFN-gamma). Clones isolated from this population produced IL-22 only and had low or undetectable expression of the T(H)-17 and T helper type 1 (T(H)1) transcription factors RORgammat and T-bet. The differentiation of T cells producing only IL-22 was efficiently induced in naive T cells by plasmacytoid dendritic cells in an IL-6- and tumor necrosis factor-dependent way. Our findings delineate a previously unknown subset of human CD4(+) effector T cells dedicated to skin pathophysiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells

              The effects exerted on the in vitro development of antigen-specific T cell lines and T cell clones by addition or neutralization of interleukin 12 (IL-12) in lymphocyte bulk culture were examined. T cell lines specific for Dermatophagoides pteronyssinus group I (Der p I) derived in the presence of IL-12 exhibited reduced ability to produce IL-4 and increased ability to produce interferon gamma (IFN-gamma), and developed into Der p I-specific CD4+ T cell clones showing a T helper type 0 (Th0)- or Th1-, instead of Th2-, like cytokine profile. In contrast, purified protein derivative (PPD)-specific T cell lines derived in the presence of anti-IL-12 antibody exhibited an increased ability to produce IL-4 and developed into PPD-specific CD4+ T cell clones showing a Th0-, instead of Th1-, like profile. The influence of IL-12 on the cytokine secretion profile of Der p I-specific T cell lines was not prevented by addition to lymphocyte bulk cultures of anti- IFN-gamma antibody, but could be at least partially inhibited by the removal from bulk cultures of CD16+ cells. Thus, IL-12 and CD16+ cells appear to have inhibitory effects on the development of IL-4-producing cells and to play an inductive role in promoting Th1-like responses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                03 April 2019
                2019
                : 10
                : 642
                Affiliations
                [1] 1Department of Experimental and Clinical Medicine and Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence , Florence, Italy
                [2] 2Immunology Area, IRCCS Bambino Gesù Children's Hospital , Rome, Italy
                [3] 3Department of Neurobiology, Physiology and Behavior, University of California, Davis , Davis, CA, United States
                Author notes

                Edited by: Detlef Neumann, Hannover Medical School, Germany

                Reviewed by: Ana Claudia Zenclussen, Universitätsklinikum Magdeburg, Germany; Cristiana Stellato, University of Salerno, Italy; Roberta Bulla, University of Trieste, Italy

                *Correspondence: Marie-Pierre Piccinni mppiccinni@ 123456hotmail.com

                This article was submitted to Cytokines and Soluble Mediators in Immunity, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2019.00642
                6456711
                31001262
                fd3f23c3-b48d-4e41-ad99-396d0ce97382
                Copyright © 2019 Piccinni, Lombardelli, Logiodice, Kullolli, Maggi and Barkley.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 October 2018
                : 08 March 2019
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 83, Pages: 15, Words: 11236
                Categories
                Immunology
                Original Research

                Immunology
                hormone replacement therapy,contraception,medroxyprogesterone acetate,th1,th2,th17,th22,infection
                Immunology
                hormone replacement therapy, contraception, medroxyprogesterone acetate, th1, th2, th17, th22, infection

                Comments

                Comment on this article