30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors

      Journal of the American Society of Nephrology
      American Society of Nephrology (ASN)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Growing evidence indicates that oxidative and endoplasmic reticular stress, which trigger changes in ion channels and inflammatory pathways that may undermine cellular homeostasis and survival, are critical determinants of injury in the diabetic kidney. Cells are normally able to mitigate these cellular stresses by maintaining high levels of autophagy, an intracellular lysosome-dependent degradative pathway that clears the cytoplasm of dysfunctional organelles. However, the capacity for autophagy in both podocytes and renal tubular cells is markedly impaired in type 2 diabetes, and this deficiency contributes importantly to the intensity of renal injury. The primary drivers of autophagy in states of nutrient and oxygen deprivation—sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia-inducible factors (HIF-1 α and HIF-2 α)—can exert renoprotective effects by promoting autophagic flux and by exerting direct effects on sodium transport and inflammasome activation. Type 2 diabetes is characterized by marked suppression of SIRT1 and AMPK, leading to a diminution in autophagic flux in glomerular podocytes and renal tubules and markedly increasing their susceptibility to renal injury. Importantly, because insulin acts to depress autophagic flux, these derangements in nutrient deprivation signaling are not ameliorated by antihyperglycemic drugs that enhance insulin secretion or signaling. Metformin is an established AMPK agonist that can promote autophagy, but its effects on the course of CKD have been demonstrated only in the experimental setting. In contrast, the effects of sodium-glucose cotransporter–2 (SGLT2) inhibitors may be related primarily to enhanced SIRT1 and HIF-2 α signaling; this can explain the effects of SGLT2 inhibitors to promote ketonemia and erythrocytosis and potentially underlies their actions to increase autophagy and mute inflammation in the diabetic kidney. These distinctions may contribute importantly to the consistent benefit of SGLT2 inhibitors to slow the deterioration in glomerular function and reduce the risk of ESKD in large-scale randomized clinical trials of patients with type 2 diabetes.

          Related collections

          Most cited references219

          • Record: found
          • Abstract: found
          • Article: not found

          Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

          Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium-glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus

            Long-term microvascular and neurologic complications cause major morbidity and mortality in patients with insulin-dependent diabetes mellitus (IDDM). We examined whether intensive treatment with the goal of maintaining blood glucose concentrations close to the normal range could decrease the frequency and severity of these complications. A total of 1441 patients with IDDM--726 with no retinopathy at base line (the primary-prevention cohort) and 715 with mild retinopathy (the secondary-intervention cohort) were randomly assigned to intensive therapy administered either with an external insulin pump or by three or more daily insulin injections and guided by frequent blood glucose monitoring or to conventional therapy with one or two daily insulin injections. The patients were followed for a mean of 6.5 years, and the appearance and progression of retinopathy and other complications were assessed regularly. In the primary-prevention cohort, intensive therapy reduced the adjusted mean risk for the development of retinopathy by 76 percent (95 percent confidence interval, 62 to 85 percent), as compared with conventional therapy. In the secondary-intervention cohort, intensive therapy slowed the progression of retinopathy by 54 percent (95 percent confidence interval, 39 to 66 percent) and reduced the development of proliferative or severe nonproliferative retinopathy by 47 percent (95 percent confidence interval, 14 to 67 percent). In the two cohorts combined, intensive therapy reduced the occurrence of microalbuminuria (urinary albumin excretion of > or = 40 mg per 24 hours) by 39 percent (95 percent confidence interval, 21 to 52 percent), that of albuminuria (urinary albumin excretion of > or = 300 mg per 24 hours) by 54 percent (95 percent confidence interval 19 to 74 percent), and that of clinical neuropathy by 60 percent (95 percent confidence interval, 38 to 74 percent). The chief adverse event associated with intensive therapy was a two-to-threefold increase in severe hypoglycemia. Intensive therapy effectively delays the onset and slows the progression of diabetic retinopathy, nephropathy, and neuropathy in patients with IDDM.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              mTOR signaling in growth control and disease.

              The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis. The pathway regulates many major cellular processes and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration. Here, we review recent advances in our understanding of the mTOR pathway and its role in health, disease, and aging. We further discuss pharmacological approaches to treat human pathologies linked to mTOR deregulation. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of the American Society of Nephrology
                JASN
                American Society of Nephrology (ASN)
                1046-6673
                1533-3450
                April 30 2020
                May 2020
                May 2020
                April 10 2020
                : 31
                : 5
                : 907-919
                Article
                10.1681/ASN.2020010010
                7217421
                32276962
                fde2b799-c004-4271-b51d-1daa8cf9c511
                © 2020
                History

                Comments

                Comment on this article