Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      “Decoding” Angiogenesis: New Facets Controlling Endothelial Cell Behavior

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Angiogenesis, the formation of new blood vessels, is a unique and crucial biological process occurring during both development and adulthood. A better understanding of the mechanisms that regulates such process is mandatory to intervene in pathophysiological conditions. Here we highlight some recent argument on new players that are critical in endothelial cells, by summarizing novel discoveries that regulate notorious vascular pathways such as Vascular Endothelial Growth Factor (VEGF), Notch and Planar Cell Polarity (PCP), and by discussing more recent findings that put metabolism, redox signaling and hemodynamic forces as novel unforeseen facets in angiogenesis. These new aspects, that critically regulate angiogenesis and vascular homeostasis in health and diseased, represent unforeseen new ground to develop anti-angiogenic therapies.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Angiogenesis in life, disease and medicine.

          The growth of blood vessels (a process known as angiogenesis) is essential for organ growth and repair. An imbalance in this process contributes to numerous malignant, inflammatory, ischaemic, infectious and immune disorders. Recently, the first anti-angiogenic agents have been approved for the treatment of cancer and blindness. Angiogenesis research will probably change the face of medicine in the next decades, with more than 500 million people worldwide predicted to benefit from pro- or anti-angiogenesis treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial Notch activity promotes angiogenesis and osteogenesis in bone.

            Blood vessel growth in the skeletal system and osteogenesis seem to be coupled, suggesting the existence of molecular crosstalk between endothelial and osteoblastic cells. Understanding the nature of the mechanisms linking angiogenesis and bone formation should be of great relevance for improved fracture healing or prevention of bone mass loss. Here we show that vascular growth in bone involves a specialized, tissue-specific form of angiogenesis. Notch signalling promotes endothelial cell proliferation and vessel growth in postnatal long bone, which is the opposite of the well-established function of Notch and its ligand Dll4 in the endothelium of other organs and tumours. Endothelial-cell-specific and inducible genetic disruption of Notch signalling in mice not only impaired bone vessel morphology and growth, but also led to reduced osteogenesis, shortening of long bones, chondrocyte defects, loss of trabeculae and decreased bone mass. On the basis of a series of genetic experiments, we conclude that skeletal defects in these mutants involved defective angiocrine release of Noggin from endothelial cells, which is positively regulated by Notch. Administration of recombinant Noggin, a secreted antagonist of bone morphogenetic proteins, restored bone growth and mineralization, chondrocyte maturation, the formation of trabeculae and osteoprogenitor numbers in endothelial-cell-specific Notch pathway mutants. These findings establish a molecular framework coupling angiogenesis, angiocrine signals and osteogenesis, which may prove significant for the development of future therapeutic applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fatty acid carbon is essential for dNTP synthesis in endothelial cells

              The metabolism of endothelial cells (ECs) during vessel sprouting remains poorly studied. Here, we report that endothelial loss of CPT1a, a rate-limiting enzyme of fatty acid oxidation (FAO), caused vascular sprouting defects due to impaired proliferation, not migration of ECs. Reduction of FAO in ECs did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labeling studies in control ECs showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1a silencing reduced these processes and depleted EC stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1a-silenced ECs. Finally, CPT1 blockade inhibited pathological ocular angiogenesis, suggesting a novel strategy for blocking angiogenesis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                21 July 2016
                2016
                : 7
                : 306
                Affiliations
                [1] 1Laboratory of Endothelial Molecular Biology, Department of Oncology, Vesalius Research Center, VIB, KU Leuven Leuven, Belgium
                [2] 2Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
                Author notes

                Edited by: Antonio Colantuoni, University of Naples Federico II, Italy

                Reviewed by: Pasquale Pagliaro, University of Turin, Italy; Jincai Luo, Peking University, China

                *Correspondence: Massimo M. Santoro massimo.santoro@ 123456vib-kuleuven.be

                This article was submitted to Vascular Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2016.00306
                4954849
                27493632
                fe4832fc-a01b-478f-9869-15905de086e5
                Copyright © 2016 Sewduth and Santoro.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 May 2016
                : 06 July 2016
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 67, Pages: 8, Words: 5912
                Funding
                Funded by: European Research Council 10.13039/501100000781
                Award ID: 647057
                Funded by: Fonds Wetenschappelijk Onderzoek 10.13039/501100003130
                Funded by: Associazione Italiana per la Ricerca sul Cancro 10.13039/501100005010
                Award ID: 8911
                Categories
                Physiology
                Mini Review

                Anatomy & Physiology
                angiogenesis,redox signaling,notch signaling pathway,flow dynamics,metabolism
                Anatomy & Physiology
                angiogenesis, redox signaling, notch signaling pathway, flow dynamics, metabolism

                Comments

                Comment on this article