20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Probing structural changes of self assembled i-motif DNA

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report an i-motif structural probing system using fluorescent Thioflavin T (ThT). This probe can discriminate the structural changes of RET and Rb i-motif sequences depending on pH change.

          Abstract

          We report an i-motif structural probing system based on Thioflavin T (ThT) as a fluorescent sensor. This probe can discriminate the structural changes of RET and Rb i-motif sequences according to pH change.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          A DNA-based method for rationally assembling nanoparticles into macroscopic materials.

          Colloidal particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectroscopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods. A great deal of control can now be exercised over the chemical composition, size and polydispersity of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligonucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthesis from DNA of a molecule with the connectivity of a cube.

            A principal goal of biotechnology is the assembly of novel biomaterials for analytical, industrial and therapeutic purposes. The advent of stable immobile nucleic acid branched junctions makes DNA a good candidate for building frameworks to which proteins or other functional molecules can be attached and thereby juxtaposed. The addition of single-stranded 'sticky' ends to branched DNA molecules converts them into macromolecular valence clusters that can be ligated together. The edges of these frameworks are double-helical DNA, and the vertices correspond to the branch points of junctions. Here, we report the construction from DNA of a covalently closed cube-like molecular complex containing twelve equal-length double-helical edges arranged about eight vertices. Each of the six 'faces' of the object is a single-stranded cyclic molecule, doubly catenated to four neighbouring strands, and each vertex is connected by an edge to three others. Each edge contains a unique restriction site for analytical purposes. This is the first construction of a closed polyhedral object from DNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron.

              Molecular self-assembly offers a means of spontaneously forming complex and well-defined structures from simple components. The specific bonding between DNA base pairs has been used in this way to create DNA-based nanostructures and to direct the assembly of material on the subnanometre to micrometre scale. In principle, large-scale clonal production of suitable DNA sequences and the directed evolution of sequence lineages towards optimized behaviour can be realized through exponential DNA amplification by polymerases. But known examples of three-dimensional geometric DNA objects are not amenable to cloning because they contain topologies that prevent copying by polymerases. Here we report the design and synthesis of a 1,669-nucleotide, single-stranded DNA molecule that is readily amplified by polymerases and that, in the presence of five 40-mer synthetic oligodeoxynucleotides, folds into an octahedron structure by a simple denaturation-renaturation procedure. We use cryo-electron microscopy to show that the DNA strands fold successfully, with 12 struts or edges joined at six four-way junctions to form hollow octahedra approximately 22 nanometres in diameter. Because the base-pair sequence of individual struts is not repeated in a given octahedron, each strut is uniquely addressable by the appropriate sequence-specific DNA binder.
                Bookmark

                Author and article information

                Journal
                CHCOFS
                Chemical Communications
                Chem. Commun.
                Royal Society of Chemistry (RSC)
                1359-7345
                1364-548X
                2015
                2015
                : 51
                : 18
                : 3747-3749
                Affiliations
                [1 ]Controlled Release and Delivery Lab (CRD)
                [2 ]Advanced Membranes and Porous Materials Center
                [3 ]King Abdullah University of Science and Technology (KAUST)
                [4 ]Thuwal
                [5 ]Kingdom of Saudi Arabia
                Article
                10.1039/C4CC06824F
                25350559
                fe6c4ffb-e611-4e57-bbf3-dda687f767aa
                © 2015
                History

                Comments

                Comment on this article