18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Akkari et al. examined the roles of the cathepsin Z (CtsZ) protease, which is provided by both cancer cells and macrophages in pancreatic neuroendocrine tumors. Tumor proliferation was exclusively regulated by cancer cell-intrinsic functions of CtsZ, whereas tumor invasion required contributions from both macrophages and cancer cells. These results underscore the complexity of interactions within the tumor microenvironment and indicate that cellular source can impact molecular function.

          Abstract

          During the process of tumor progression, cancer cells can produce the requisite growth- and invasion-promoting factors and can also rely on noncancerous cells in the tumor microenvironment as an alternative, cell-extrinsic source. However, whether the cellular source influences the function of such tumor-promoting factors remains an open question. Here, we examined the roles of the cathepsin Z (CtsZ) protease, which is provided by both cancer cells and macrophages in pancreatic neuroendocrine tumors in humans and mice. We found that tumor proliferation was exclusively regulated by cancer cell-intrinsic functions of CtsZ, whereas tumor invasion required contributions from both macrophages and cancer cells. Interestingly, several of the tumor-promoting functions of CtsZ were not dependent on its described catalytic activity but instead were mediated via the Arg–Gly–Asp (RGD) motif in the enzyme prodomain, which regulated interactions with integrins and the extracellular matrix. Together, these results underscore the complexity of interactions within the tumor microenvironment and indicate that cellular source can indeed impact molecular function.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Microenvironmental regulation of tumor progression and metastasis.

          Cancers develop in complex tissue environments, which they depend on for sustained growth, invasion and metastasis. Unlike tumor cells, stromal cell types within the tumor microenvironment (TME) are genetically stable and thus represent an attractive therapeutic target with reduced risk of resistance and tumor recurrence. However, specifically disrupting the pro-tumorigenic TME is a challenging undertaking, as the TME has diverse capacities to induce both beneficial and adverse consequences for tumorigenesis. Furthermore, many studies have shown that the microenvironment is capable of normalizing tumor cells, suggesting that re-education of stromal cells, rather than targeted ablation per se, may be an effective strategy for treating cancer. Here we discuss the paradoxical roles of the TME during specific stages of cancer progression and metastasis, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microenvironmental regulation of metastasis.

            Metastasis is a multistage process that requires cancer cells to escape from the primary tumour, survive in the circulation, seed at distant sites and grow. Each of these processes involves rate-limiting steps that are influenced by non-malignant cells of the tumour microenvironment. Many of these cells are derived from the bone marrow, particularly the myeloid lineage, and are recruited by cancer cells to enhance their survival, growth, invasion and dissemination. This Review describes experimental data demonstrating the role of the microenvironment in metastasis, identifies areas for future research and suggests possible new therapeutic avenues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Accessories to the crime: functions of cells recruited to the tumor microenvironment.

              Mutationally corrupted cancer (stem) cells are the driving force of tumor development and progression. Yet, these transformed cells cannot do it alone. Assemblages of ostensibly normal tissue and bone marrow-derived (stromal) cells are recruited to constitute tumorigenic microenvironments. Most of the hallmarks of cancer are enabled and sustained to varying degrees through contributions from repertoires of stromal cell types and distinctive subcell types. Their contributory functions to hallmark capabilities are increasingly well understood, as are the reciprocal communications with neoplastic cancer cells that mediate their recruitment, activation, programming, and persistence. This enhanced understanding presents interesting new targets for anticancer therapy. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Genes Dev
                Genes Dev
                genesdev
                genesdev
                GAD
                Genes & Development
                Cold Spring Harbor Laboratory Press
                0890-9369
                1549-5477
                1 October 2014
                : 28
                : 19
                : 2134-2150
                Affiliations
                [1 ]Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York,10065, USA;
                [2 ]Institute of Molecular Medicine and Cell Research, Albert-Ludwigs University, D-79104 Freiburg, Germany;
                [3 ]BIOSS Centre for Biological Signalling Studies, D-79104 Freiburg, Germany;
                [4 ]German Cancer Consortium (DKTK), D-79104 Freiburg, Germany;
                [5 ]Pathology Department, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
                Author notes
                Corresponding author: joycej@ 123456mskcc.org
                Article
                8711660
                10.1101/gad.249599.114
                4180975
                25274726
                ff5b578b-c76c-4e49-9734-b0ba28e32c83
                © 2014 Akkari et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 26 July 2014
                : 29 August 2014
                Page count
                Pages: 17
                Categories
                Research Paper

                cell invasion,cell migration,tumor microenvironment,protease

                Comments

                Comment on this article